skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Omidvar-Tehrani, Behrooz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The ability to reuse trained models in Reinforcement Learning (RL) holds substantial practical value in particular for complex tasks. While model reusability is widely studied for supervised models in data management, to the best of our knowledge, this is the first ever principled study that is proposed for RL. To capture trained policies, we develop a framework based on an expressive and lossless graph data model that accommodates Temporal Difference Learning and Deep-RL based RL algorithms. Our framework is able to capture arbitrary reward functions that can be composed at inference time. The framework comes with theoretical guarantees and shows that it yields the same result as policies trained from scratch. We design a parameterized algorithm that strikes a balance between efficiency and quality w.r.t cumulative reward. Our experiments with two common RL tasks (query refinement and robot movement) corroborate our theory and show the effectiveness and efficiency of our algorithms. 
    more » « less