skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Oni, Md_Ashif Islam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents the development and characterization of a miniaturized RF sensor designed for temperature sensing applications, leveraging advanced additive manufacturing techniques. The sensor utilizes NiTiNOL, a superelastic alloy, as the temperature-sensing material, integrated into a split-box resonator structure. The resonator operates at a frequency of 38.125 GHz, and the design benefits from the flexibility and precision offered by 3D printing technology. This approach allows for a compact form factor and robust performance in harsh environments. The sensor's performance was evaluated through a series of simulations, demonstrating high sensitivity and reliability in temperature measurement. The results highlight the potential of additively manufactured RF sensors in various industrial, medical, and environmental monitoring applications, offering advantages such as reduced size, weight, and power consumption, along with enhanced mechanical robustness and thermal stability. This work underscores the significance of additive manufacturing in advancing next-generation sensor technologies. 
    more » « less
    Free, publicly-accessible full text available December 9, 2025
  2. This letter proposes an angle-multiplexed multifocal method for designing a 2-D beam-scanning transmitarray (TA). The angle-multiplexed method is commonly used to generate orbital angular momentum (OAM) multiplexing. The multifocal phase distribution is calculated using the angle-multiplexed and bifocal methods to achieve higher gain enhancement and 2-D beam-scanning with a low scan loss without optimization. The additive manufacturing technology is used to fabricate a 3-D transmission line component. In the terahertz band, the transmitting and receiving (Tx-Rx) unit cell impedance matching can be affected by the Pancharatnam–Berry (P-B) method, and a 3-D coaxial line is introduced to tackle this problem. For proof of concept, the prototype was fabricated. Feeded by a WR-06 waveguide probe, the proposed TA achieves a gain enhancement of 16.3 dB and ±30° 2-D beam-scanning, simulated and measured 3 dB gain bandwidths of 19.6% and 16.3%, and the measured axial ratio bandwidth of 30.7%. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026