- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000001030000
- More
- Availability
-
22
- Author / Contributor
- Filter by Author / Creator
-
-
Orosz_Hunziker, Florencia (4)
-
Barron, Katrina (2)
-
Batistelli, Karina (2)
-
Yamskulna, Gaywalee (2)
-
Creutzig, Thomas (1)
-
McRae, Robert (1)
-
Nakano, Hiromu (1)
-
Pedić_Tomić, Veronika (1)
-
Ros_Camacho, Ana (1)
-
Wood, Simon (1)
-
Yang, Jinwei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Graded pseudo-traces for strongly interlocked modules for a vertex operator algebra and applicationsFree, publicly-accessible full text available March 25, 2026
-
Creutzig, Thomas; McRae, Robert; Orosz_Hunziker, Florencia; Yang, Jinwei (, Arxiv)Free, publicly-accessible full text available January 19, 2026
-
Nakano, Hiromu; Orosz_Hunziker, Florencia; Ros_Camacho, Ana; Wood, Simon (, Arxiv)
-
Barron, Katrina; Batistelli, Karina; Orosz_Hunziker, Florencia; Pedić_Tomić, Veronika; Yamskulna, Gaywalee (, Journal of Mathematical Physics)Using the Zhu algebra for a certain category of C-graded vertex algebras V, we prove that if V is finitely Ω-generated and satisfies suitable grading conditions, then V is rational, i.e., it has semi-simple representation theory, with a one-dimensional level zero Zhu algebra. Here, Ω denotes the vectors in V that are annihilated by lowering the real part of the grading. We apply our result to the family of rank one Weyl vertex algebras with conformal element ωμ parameterized by μ∈C and prove that for certain non-integer values of μ, these vertex algebras, which are non-integer graded, are rational, with a one-dimensional level zero Zhu algebra. In addition, we generalize this result to appropriate C-graded Weyl vertex algebras of arbitrary ranks.more » « less
An official website of the United States government
