skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On rationality of C-graded vertex algebras and applications to Weyl vertex algebras under conformal flow
Using the Zhu algebra for a certain category of C-graded vertex algebras V, we prove that if V is finitely Ω-generated and satisfies suitable grading conditions, then V is rational, i.e., it has semi-simple representation theory, with a one-dimensional level zero Zhu algebra. Here, Ω denotes the vectors in V that are annihilated by lowering the real part of the grading. We apply our result to the family of rank one Weyl vertex algebras with conformal element ωμ parameterized by μ∈C and prove that for certain non-integer values of μ, these vertex algebras, which are non-integer graded, are rational, with a one-dimensional level zero Zhu algebra. In addition, we generalize this result to appropriate C-graded Weyl vertex algebras of arbitrary ranks.  more » « less
Award ID(s):
2102786
PAR ID:
10649483
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Journal of Mathematical Physics
Volume:
63
Issue:
9
ISSN:
0022-2488
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Here we introduce a series of associative algebras attached to a vertex operator algebra V of CFT type, called mode transition algebras, and show they reflect both algebraic properties of V and geometric constructions on moduli of curves. Pointed and coordinatized curves, labeled by admissible V-modules, give rise to sheaves of coinvariants. We show that if the mode transition algebras admit multiplicative identities satisfying certain natural properties (called strong identity elements), these sheaves deform as wanted on families of curves with nodes. This provides new contexts in which coherent sheaves of coinvariants form vector bundles. We also show that mode transition algebras carry information about higher level Zhu algebras and generalized Verma modules. To illustrate, we explicitly describe the higher level Zhu algebras of the Heisenberg vertex operator algebra, proving a conjecture of Addabbo–Barron. 
    more » « less
  2. Abstract Using the invariant theory of arc spaces, we find minimal strong generating sets for certain cosets of affine vertex algebras inside free field algebras that are related to classical Howe duality. These results have several applications. First, for any vertex algebra $${{\mathcal {V}}}$$, we have a surjective homomorphism of differential algebras $$\mathbb {C}[J_{\infty }(X_{{{\mathcal {V}}}})] \rightarrow \text {gr}^{F}({{\mathcal {V}}})$$; equivalently, the singular support of $${{\mathcal {V}}}$$ is a closed subscheme of the arc space of the associated scheme $$X_{{{\mathcal {V}}}}$$. We give many new examples of classically free vertex algebras (i.e., this map is an isomorphism), including $$L_{k}({{\mathfrak {s}}}{{\mathfrak {p}}}_{2n})$$ for all positive integers $$n$$ and $$k$$. We also give new examples where the kernel of this map is nontrivial but is finitely generated as a differential ideal. Next, we prove a coset realization of the subregular $${{\mathcal {W}}}$$-algebra of $${{\mathfrak {s}}}{{\mathfrak {l}}}_{n}$$ at a critical level that was previously conjectured by Creutzig, Gao, and the 1st author. Finally, we give some new level-rank dualities involving affine vertex superalgebras. 
    more » « less
  3. Abstract We discuss a set of heterotic and type II string theory compactifications to$$1+1$$ 1 + 1 dimensions that are characterized by factorized internal worldsheet CFTs of the form$$V_1\otimes \bar{V}_2$$ V 1 V ¯ 2 , where$$V_1, V_2$$ V 1 , V 2 are self-dual (super) vertex operator algebras. In the cases with spacetime supersymmetry, we show that the BPS states form a module for a Borcherds–Kac–Moody (BKM) (super)algebra, and we prove that for each model the BKM (super)algebra is a symmetry of genus zero BPS string amplitudes. We compute the supersymmetric indices of these models using both Hamiltonian and path integral formalisms. The path integrals are manifestly automorphic forms closely related to the Borcherds–Weyl–Kac denominator. Along the way, we comment on various subtleties inherent to these low-dimensional string compactifications. 
    more » « less
  4. Starting with a vertex-weighted pointed graph [Formula: see text], we form the free loop algebra [Formula: see text] defined in Hartglass–Penneys’ article on canonical [Formula: see text]-algebras associated to a planar algebra. Under mild conditions, [Formula: see text] is a non-nuclear simple [Formula: see text]-algebra with unique tracial state. There is a canonical polynomial subalgebra [Formula: see text] together with a Dirac number operator [Formula: see text] such that [Formula: see text] is a spectral triple. We prove the Haagerup-type bound of Ozawa–Rieffel to verify [Formula: see text] yields a compact quantum metric space in the sense of Rieffel. We give a weighted analog of Benjamini–Schramm convergence for vertex-weighted pointed graphs. As our [Formula: see text]-algebras are non-nuclear, we adjust the Lip-norm coming from [Formula: see text] to utilize the finite dimensional filtration of [Formula: see text]. We then prove that convergence of vertex-weighted pointed graphs leads to quantum Gromov–Hausdorff convergence of the associated adjusted compact quantum metric spaces. As an application, we apply our construction to the Guionnet–Jones–Shyakhtenko (GJS) [Formula: see text]-algebra associated to a planar algebra. We conclude that the compact quantum metric spaces coming from the GJS [Formula: see text]-algebras of many infinite families of planar algebras converge in quantum Gromov–Hausdorff distance. 
    more » « less
  5. We prove a number of results having to do with equipping type-I\mathrm{C}^*-algebras with compact quantum group structures, the two main ones being that such a compact quantum group is necessarily co-amenable, and that if the\mathrm{C}^*-algebra in question is an extension of a non-zero finite direct sum of elementary\mathrm{C}^*-algebras by a commutative unital\mathrm{C}^*-algebra then it must be finite-dimensional. 
    more » « less