- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
01000000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Gupta, Vedant (1)
-
Konidaris, George (1)
-
Merlin, Max (1)
-
Orozco, Sergio (1)
-
Parikh, Neev (1)
-
Parr, Shane (1)
-
Rosen, Eric (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Real-world robot task planning is intractable in part due to partial observability. A common approach to reducing complexity is introducing additional structure into the decision process, such as mixed-observability, factored states, or temporally-extended actions. We propose the locally observable Markov decision process, a novel formulation that models task-level planning where uncertainty pertains to object-level attributes and where a robot has subroutines for seeking and accurately observing objects. This models sensors that are range-limited and line-of-sight—objects occluded or outside sensor range are unobserved, but the attributes of objects that fall within sensor view can be resolved via repeated observation. Our model results in a three-stage planning process: first, the robot plans using only observed objects; if that fails, it generates a target object that, if observed, could result in a feasible plan; finally, it attempts to locate and observe the target, replanning after each newly observed object. By combining LOMDPs with off-the-shelf Markov planners, we outperform state-of-the-art solvers for both object-oriented POMDP and MDP analogues with the same task specification. We then apply the formulation to successfully solve a task on a mobile robot.more » « lessFree, publicly-accessible full text available May 1, 2025