skip to main content


This content will become publicly available on May 1, 2025

Title: Robot Task Planning Under Local Observability
Real-world robot task planning is intractable in part due to partial observability. A common approach to reducing complexity is introducing additional structure into the decision process, such as mixed-observability, factored states, or temporally-extended actions. We propose the locally observable Markov decision process, a novel formulation that models task-level planning where uncertainty pertains to object-level attributes and where a robot has subroutines for seeking and accurately observing objects. This models sensors that are range-limited and line-of-sight—objects occluded or outside sensor range are unobserved, but the attributes of objects that fall within sensor view can be resolved via repeated observation. Our model results in a three-stage planning process: first, the robot plans using only observed objects; if that fails, it generates a target object that, if observed, could result in a feasible plan; finally, it attempts to locate and observe the target, replanning after each newly observed object. By combining LOMDPs with off-the-shelf Markov planners, we outperform state-of-the-art solvers for both object-oriented POMDP and MDP analogues with the same task specification. We then apply the formulation to successfully solve a task on a mobile robot.  more » « less
Award ID(s):
1844960 1955361
NSF-PAR ID:
10498003
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Proceedings of the 2024 IEEE Conference on Robotics and Automation
Date Published:
Journal Name:
Proceedings of the 2024 IEEE Conference on Robotics and Automation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Intelligent robots frequently need to explore the objects in their working environments. Modern sensors have enabled robots to learn object properties via perception of multiple modalities. However, object exploration in the real world poses a challenging trade-off between information gains and exploration action costs. Mixed observability Markov decision process (MOMDP) is a framework for planning under uncertainty, while accounting for both fully and partially observable components of the state. Robot perception frequently has to face such mixed observability. This work enables a robot equipped with an arm to dynamically construct query-oriented MOMDPs for multi-modal predicate identification (MPI) of objects. The robot's behavioral policy is learned from two datasets collected using real robots. Our approach enables a robot to explore object properties in a way that is significantly faster while improving accuracies in comparison to existing methods that rely on hand-coded exploration strategies. 
    more » « less
  2. Robots working in human environments often encounter a wide range of articulated objects, such as tools, cabinets, and other jointed objects. Such articulated objects can take an infinite number of possible poses, as a point in a potentially high-dimensional continuous space. A robot must perceive this continuous pose to manipulate the object to a desired pose. This problem of perception and manipulation of articulated objects remains a challenge due to its high dimensionality and multimodal uncertainty. Here, we describe a factored approach to estimate the poses of articulated objects using an efficient approach to nonparametric belief propagation. We consider inputs as geometrical models with articulation constraints and observed RGBD (red, green, blue, and depth) sensor data. The described framework produces object-part pose beliefs iteratively. The problem is formulated as a pairwise Markov random field (MRF), where each hidden node (continuous pose variable) is an observed object-part’s pose and the edges denote the articulation constraints between the parts. We describe articulated pose estimation by a “pull” message passing algorithm for nonparametric belief propagation (PMPNBP) and evaluate its convergence properties over scenes with articulated objects. Robot experiments are provided to demonstrate the necessity of maintaining beliefs to perform goal-driven manipulation tasks. 
    more » « less
  3. Robots working in human environments often encounter a wide range of articulated objects, such as tools, cabinets, and other jointed objects. Such articulated objects can take an infinite number of possible poses, as a point in a potentially high-dimensional continuous space. A robot must perceive this continuous pose in order to manipulate the object to a desired pose. This problem of perception and manipulation of articulated objects remains a challenge due to its high dimensionality and multi-modal uncertainty. In this paper, we propose a factored approach to estimate the poses of articulated objects using an efficient non-parametric belief propagation algorithm. We consider inputs as geometrical models with articulation constraints, and observed 3D sensor data. The proposed framework produces object-part pose beliefs iteratively. The problem is formulated as a pairwise Markov Random Field (MRF) where each hidden node (continuous pose variable) models an observed object-part's pose and each edge denotes an articulation constraint between a pair of parts. We propose articulated pose estimation by a Pull Message Passing algorithm for Nonparametric Belief Propagation (PMPNBP) and evaluate its convergence properties over scenes with articulated objects. 
    more » « less
  4. This paper presents a framework to learn the reward function underlying high-level sequential tasks from demonstrations. The purpose of reward learning, in the context of learning from demonstration (LfD), is to generate policies that mimic the demonstrator’s policies, thereby enabling imitation learning. We focus on a human-robot interaction(HRI) domain where the goal is to learn and model structured interactions between a human and a robot. Such interactions can be modeled as a partially observable Markov decision process (POMDP) where the partial observability is caused by uncertainties associated with the ways humans respond to different stimuli. The key challenge in finding a good policy in such a POMDP is determining the reward function that was observed by the demonstrator. Existing inverse reinforcement learning(IRL) methods for POMDPs are computationally very expensive and the problem is not well understood. In comparison, IRL algorithms for Markov decision process (MDP) are well defined and computationally efficient. We propose an approach of reward function learning for high-level sequential tasks from human demonstrations where the core idea is to reduce the underlying POMDP to an MDP and apply any efficient MDP-IRL algorithm. Our extensive experiments suggest that the reward function learned this way generates POMDP policies that mimic the policies of the demonstrator well. 
    more » « less
  5. Abstract— A core capability of robots is to reason about mul- tiple objects under uncertainty. Partially Observable Markov Decision Processes (POMDPs) provide a means of reasoning under uncertainty for sequential decision making, but are computationally intractable in large domains. In this paper, we propose Object-Oriented POMDPs (OO-POMDPs), which represent the state and observation spaces in terms of classes and objects. The structure afforded by OO-POMDPs support a factorization of the agent’s belief into independent object distributions, which enables the size of the belief to scale linearly versus exponentially in the number of objects. We formulate a novel Multi-Object Search (MOS) task as an OO-POMDP for mobile robotics domains in which the agent must find the locations of multiple objects. Our solution exploits the structure of OO-POMDPs by featuring human language to selectively update the belief at task onset. Using this structure, we develop a new algorithm for efficiently solving OO-POMDPs: Object- Oriented Partially Observable Monte-Carlo Planning (OO- POMCP). We show that OO-POMCP with grounded language commands is sufficient for solving challenging MOS tasks both in simulation and on a physical mobile robot. 
    more » « less