Intelligent robots frequently need to explore the objects in their working environments. Modern sensors have enabled robots to learn object properties via perception of multiple modalities. However, object exploration in the real world poses a challenging trade-off between information gains and exploration action costs. Mixed observability Markov decision process (MOMDP) is a framework for planning under uncertainty, while accounting for both fully and partially observable components of the state. Robot perception frequently has to face such mixed observability. This work enables a robot equipped with an arm to dynamically construct query-oriented MOMDPs for multi-modal predicate identification (MPI) of objects. The robot's behavioral policy is learned from two datasets collected using real robots. Our approach enables a robot to explore object properties in a way that is significantly faster while improving accuracies in comparison to existing methods that rely on hand-coded exploration strategies.
more »
« less
This content will become publicly available on May 1, 2025
Robot Task Planning Under Local Observability
Real-world robot task planning is intractable in part due to partial observability. A common approach to
reducing complexity is introducing additional structure into the decision process, such as mixed-observability, factored states, or temporally-extended actions. We propose the locally observable Markov decision process, a novel formulation that models task-level planning where uncertainty pertains to object-level attributes and where a robot has subroutines for seeking and accurately observing objects. This models sensors that
are range-limited and line-of-sight—objects occluded or outside sensor range are unobserved, but the attributes of objects that fall within sensor view can be resolved via repeated observation. Our model results in a three-stage planning process: first, the robot plans using only observed objects; if that fails, it generates
a target object that, if observed, could result in a feasible plan; finally, it attempts to locate and observe the target, replanning after each newly observed object. By combining LOMDPs with off-the-shelf Markov planners, we outperform state-of-the-art solvers for both object-oriented POMDP and MDP analogues
with the same task specification. We then apply the formulation to successfully solve a task on a mobile robot.
more »
« less
- PAR ID:
- 10498003
- Publisher / Repository:
- Proceedings of the 2024 IEEE Conference on Robotics and Automation
- Date Published:
- Journal Name:
- Proceedings of the 2024 IEEE Conference on Robotics and Automation
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Robots working in human environments often encounter a wide range of articulated objects, such as tools, cabinets, and other jointed objects. Such articulated objects can take an infinite number of possible poses, as a point in a potentially high-dimensional continuous space. A robot must perceive this continuous pose to manipulate the object to a desired pose. This problem of perception and manipulation of articulated objects remains a challenge due to its high dimensionality and multimodal uncertainty. Here, we describe a factored approach to estimate the poses of articulated objects using an efficient approach to nonparametric belief propagation. We consider inputs as geometrical models with articulation constraints and observed RGBD (red, green, blue, and depth) sensor data. The described framework produces object-part pose beliefs iteratively. The problem is formulated as a pairwise Markov random field (MRF), where each hidden node (continuous pose variable) is an observed object-part’s pose and the edges denote the articulation constraints between the parts. We describe articulated pose estimation by a “pull” message passing algorithm for nonparametric belief propagation (PMPNBP) and evaluate its convergence properties over scenes with articulated objects. Robot experiments are provided to demonstrate the necessity of maintaining beliefs to perform goal-driven manipulation tasks.more » « less
-
Robots working in human environments often encounter a wide range of articulated objects, such as tools, cabinets, and other jointed objects. Such articulated objects can take an infinite number of possible poses, as a point in a potentially high-dimensional continuous space. A robot must perceive this continuous pose in order to manipulate the object to a desired pose. This problem of perception and manipulation of articulated objects remains a challenge due to its high dimensionality and multi-modal uncertainty. In this paper, we propose a factored approach to estimate the poses of articulated objects using an efficient non-parametric belief propagation algorithm. We consider inputs as geometrical models with articulation constraints, and observed 3D sensor data. The proposed framework produces object-part pose beliefs iteratively. The problem is formulated as a pairwise Markov Random Field (MRF) where each hidden node (continuous pose variable) models an observed object-part's pose and each edge denotes an articulation constraint between a pair of parts. We propose articulated pose estimation by a Pull Message Passing algorithm for Nonparametric Belief Propagation (PMPNBP) and evaluate its convergence properties over scenes with articulated objects.more » « less
-
Abstract— A core capability of robots is to reason about mul- tiple objects under uncertainty. Partially Observable Markov Decision Processes (POMDPs) provide a means of reasoning under uncertainty for sequential decision making, but are computationally intractable in large domains. In this paper, we propose Object-Oriented POMDPs (OO-POMDPs), which represent the state and observation spaces in terms of classes and objects. The structure afforded by OO-POMDPs support a factorization of the agent’s belief into independent object distributions, which enables the size of the belief to scale linearly versus exponentially in the number of objects. We formulate a novel Multi-Object Search (MOS) task as an OO-POMDP for mobile robotics domains in which the agent must find the locations of multiple objects. Our solution exploits the structure of OO-POMDPs by featuring human language to selectively update the belief at task onset. Using this structure, we develop a new algorithm for efficiently solving OO-POMDPs: Object- Oriented Partially Observable Monte-Carlo Planning (OO- POMCP). We show that OO-POMCP with grounded language commands is sufficient for solving challenging MOS tasks both in simulation and on a physical mobile robot.more » « less
-
Abstract— Humans leverage multiple sensor modalities when interacting with objects and discovering their intrinsic properties. Using the visual modality alone is insufficient for deriving intuition behind object properties (e.g., which of two boxes is heavier), making it essential to consider non-visual modalities as well, such as the tactile and auditory. Whereas robots may leverage various modalities to obtain object property understanding via learned exploratory interactions with objects (e.g., grasping, lifting, and shaking behaviors), challenges remain: the implicit knowledge acquired by one robot via object exploration cannot be directly leveraged by another robot with different morphology, because the sensor models, observed data distributions, and interaction capabilities are different across these different robot configurations. To avoid the costly process of learning interactive object perception tasks from scratch, we propose a multi-stage projection framework for each new robot for transferring implicit knowledge of object properties across heterogeneous robot morphologies. We evaluate our approach on the object-property recognition and object-identity recognition tasks, using a dataset containing two heterogeneous robots that perform 7,600 object interactions. Results indicate that knowledge can be transferred across robots, such that a newly-deployed robot can bootstrap its recognition models without exhaustively exploring all objects. We also propose a data augmentation technique and show that this technique improves the generalization of models. We release code, datasets, and additional results, here: https: //github.com/gtatiya/Implicit-Knowledge-Transfer.more » « less