Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Native bee species in the United States provide invaluable pollination services. Concerns about native bee declines are growing, and there are calls for a national monitoring program. Documenting species ranges at ecologically meaningful scales through coverage completeness analysis is a fundamental step to track bees from species to communities. It may take decades before all existing bee specimens are digitized, so projections are needed now to focus future research and management efforts. From 1.923 million records, we created range maps for nearly 88% (3158 species) of bee species in the contiguous United States, provided the first analysis of inventory completeness for digitized specimens of a major insect clade, and perhaps most important, estimated spatial completeness accounting for all known bee specimens in USA collections, including undigitized bee specimens. Completeness analyses were very low (3–37%) across four examined spatial resolutions when using the currently available bee specimen records. Adding a subset of observations from community science data sources did not significantly increase completeness, and adding a projected 4.7 million undigitized specimens increased completeness by only an additional 12–13%. Assessments of data, including projected specimen records, indicate persistent taxonomic and geographic deficiencies. In conjunction with expedited digitization, new inventories that integrate community science data with specimen‐based documentation will be required to close these gaps. A combined effort involving both strategic inventories and accelerated digitization campaigns is needed for a more complete understanding of USA bee distributions.more » « less
-
Abstract Despite recent advances in phylogenomics, the early evolution of the largest bee family, Apidae, remains uncertain, hindering efforts to understand the history of Apidae and establish a robust comparative framework. Confirming the position of Anthophorinae—a diverse, globally distributed lineage of apid bees—has been particularly problematic, with the subfamily recovered in various conflicting positions, including as sister to all other Apidae or to the cleptoparasitic Nomadinae. We aimed to resolve relationships in Apidae and Anthophorinae by combining dense taxon sampling, with rigorous phylogenomic analysis of a dataset consisting of ultraconserved elements (UCEs) acquired from multiple sources, including low-coverage genomes. Across a diverse set of analyses, including both concatenation and species tree approaches, and numerous permutations designed to account for systematic biases, Anthophorinae was consistently recovered as the sister group to all remaining Apidae, with Nomadinae sister to (Apinae, [Xylocopinae, Eucerinae]). However, several alternative support metrics (concordance factors, quartet sampling, and gene genealogy interrogation) indicate that this result should be treated with caution. Within Anthophorinae, all genera were recovered as monophyletic, following synonymization of Varthemapistra with Habrophorula. Our results demonstrate the value of dense taxon sampling in bee phylogenomics research and how implementing diverse analytical strategies is important for fully evaluating results at difficult nodes.more » « less