This paper considers persistent monitoring of environmental phenomena using unmanned aerial vehicles (UAVs). The objective is to generate periodic dynamically feasible UAV trajectories that minimize the estimation uncertainty at a set of points of interest in the environment. We develop an optimization algorithm that iterates between determining the observation periods for a set of ordered points of interest and optimizing a continuous UAV trajectory to meet the required observation periods and UAV dynamics constraints. The interest-point visitation order is determined using a Traveling Salesman Problem (TSP), followed by a greedy optimization algorithm to determine the number of observations that minimizes the maximum steady-state eigenvalue of a Kalman filter estimator. Given the interest-point observation periods and visitation order, a minimum-jerk trajectory is generated from a bi-level optimization, formulated as a convex quadratically constrained quadratic program. The resulting B-spline trajectory is guaranteed to be feasible, meeting the observation duration, maximum velocity and acceleration, region enter and exit constraints. The feasible trajectories outperform existing methods by achieving comparable observability at up to 47% higher travel speeds, resulting in lower maximum estimation uncertainty.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract. Advances in ambient environmental monitoring technologies are enabling concerned communities and citizens to collect data to better understand their local environment and potential exposures. These mobile, low-cost tools make it possible to collect data with increased temporal and spatial resolution, providing data on a large scale with unprecedented levels of detail. This type of data has the potential to empower people to make personal decisions about their exposure and support the development of local strategies for reducing pollution and improving health outcomes. However, calibration of these low-cost instruments has been a challenge. Often, a sensor package is calibrated via field calibration. This involves colocating the sensor package with a high-quality reference instrument for an extended period and then applying machine learning or other model fitting technique such as multiple linear regression to develop a calibration model for converting raw sensor signals to pollutant concentrations. Although this method helps to correct for the effects of ambient conditions (e.g., temperature) and cross sensitivities with nontarget pollutants, there is a growing body of evidence that calibration models can overfit to a given location or set of environmental conditions on account of the incidental correlation between pollutant levels and environmental conditions, including diurnalmore »