skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ozbek, Simon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the world of soft-robotic medical devices, there is a growing need for low profile, non-rigid, and lower power actuators for soft exoskeletons and dynamic compression garments. Advanced compression garments with integrated shape memory materials have been developed recently to alleviate the functional and usability limitations associated with traditional compression garments. These advanced garments use contractile shape memory alloy (SMA) coil actuators to produce dynamic compression on the body through selective heating of the SMA material. While these garments can create spatially- and temporally-controllable compression, typical SMA materials (e.g., 70°C Flexinol) consume considerable power and require considerable thermal insulation to protect the wearer during the heating phase of the SMA actuation. Alternative SMA materials (e.g., NiTi #8 by Fort Wayne Metals, Inc.) transform below room temperature and do so using no applied electrical power and generate no waste heat. However, these materials are challenging to dynamically control and require active refrigeration to reset to material. In theory, low-temperature SMA actuators made from materials like NiTi #8 may maintain additional dynamic actuation capacity once equilibrated to room temperature (i.e., the material may not fully transform), as the SMA phase transformation temperature window expands when the material experiences applied stress. This paper investigates this possibility: we manufactured and tested low-temperature NiTi coil actuators to determine the magnitude of the additional force that can be generated via Joule heating once the material has equilibrated to room temperature. SMA spring actuators made from NiTi #8 consumed 84% less power and stabilized at significantly lower temperatures (26.0°C vs. 41.2°C) than SMA springs made from 70°C Flexinol, when actuated at identically fixed displacements (100% nominal strain) and when driven to produce equal forces (∼3.35N). This demonstration of low-power, minimal-heat exposure SMA actuation holds promise for many future wearable actuation applications, including dynamic compression garments. 
    more » « less
  2. This work encompasses the design and development of garment based shape memory alloy (SMA) compression technology that is dynamic, low-mass, and remotely controllable. Three garment design iterations are presented, consolidated from past user studies. The designed garment system has potential to serve as a research tool for understanding parameters necessary to create a desired compression haptic experience; for broadening the scope of medical/clinical interventions; as well as for enabling new modes of interaction between users separated by distance, especially in areas such as tele-rehabilitation and social mediated touch. 
    more » « less