Abstract Textile-based compression devices are widely used in fields such as healthcare, astronautics, cosmetics, defense, and more. While traditional compression garments are only able to apply passive pressure on the body, there have been some efforts to integrate smart materials such as shape memory alloys (SMAs) to make compression garments active and controllable. However, despite the advances in this field, accurate control of applied pressure on the body due remains a challenge due to vast population-scale anthropometric variability and intra-subjects variability in tissue softness, even if the actuators themselves are fully characterized. In this study, we begin to address these challenges by developing a novel size-adjustable SMA-based smart tourniquet capable of producing a controllable pressure for circumferential applications. The developed prototype was tested on an inflatable pressure cuff wrapped around a rigid cylinder. The thermal activation of SMA coils was achieved through Joule heating, and a microcontroller and a programmable power supply are used to provide the input signal. To control the compression force, a closed-loop PID controller was implemented, and the performance of the system was evaluated in 5 different testing conditions for variable and cyclic compression levels. The experiments showed that the controlled system could follow the desired control pressure reference with a steady-state of 1 mmHg. The compression tourniquet is able to produce more than 33 mmHg with an average actuation rate of 0.19 mmHg/s. This is the first demonstration of accurate closed-loop control of an SMA-incorporated compression technology to the best of our knowledge. This paper enables new, dynamic systems with controllable activation and low-effort donning and doffing, with applications ranging from healthcare solutions to advanced spacesuit design. 
                        more » 
                        « less   
                    
                            
                            Low-Power, Minimal-Heat Exposure Shape Memory Alloy (SMA) Actuators for On-Body Soft Robotics
                        
                    
    
            In the world of soft-robotic medical devices, there is a growing need for low profile, non-rigid, and lower power actuators for soft exoskeletons and dynamic compression garments. Advanced compression garments with integrated shape memory materials have been developed recently to alleviate the functional and usability limitations associated with traditional compression garments. These advanced garments use contractile shape memory alloy (SMA) coil actuators to produce dynamic compression on the body through selective heating of the SMA material. While these garments can create spatially- and temporally-controllable compression, typical SMA materials (e.g., 70°C Flexinol) consume considerable power and require considerable thermal insulation to protect the wearer during the heating phase of the SMA actuation. Alternative SMA materials (e.g., NiTi #8 by Fort Wayne Metals, Inc.) transform below room temperature and do so using no applied electrical power and generate no waste heat. However, these materials are challenging to dynamically control and require active refrigeration to reset to material. In theory, low-temperature SMA actuators made from materials like NiTi #8 may maintain additional dynamic actuation capacity once equilibrated to room temperature (i.e., the material may not fully transform), as the SMA phase transformation temperature window expands when the material experiences applied stress. This paper investigates this possibility: we manufactured and tested low-temperature NiTi coil actuators to determine the magnitude of the additional force that can be generated via Joule heating once the material has equilibrated to room temperature. SMA spring actuators made from NiTi #8 consumed 84% less power and stabilized at significantly lower temperatures (26.0°C vs. 41.2°C) than SMA springs made from 70°C Flexinol, when actuated at identically fixed displacements (100% nominal strain) and when driven to produce equal forces (∼3.35N). This demonstration of low-power, minimal-heat exposure SMA actuation holds promise for many future wearable actuation applications, including dynamic compression garments. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1722738
- PAR ID:
- 10168481
- Date Published:
- Journal Name:
- Proceedings of the 2019 Design of Medical Devices Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Textile-based compression devices are widely used in fields such as healthcare, astronautics, cosmetics, defense, and more. While traditional compression garments are only able to apply passive pressure on the body, there have been some efforts to integrate smart materials such as shape memory alloys (SMAs) to make compression garments active and controllable. However, despite the advances in this field, accurate control of applied pressure on the body due remains a challenge due to vast population-scale anthropometric variability and intra-subjects variability in tissue softness, even if the actuators themselves are fully characterized. In this study, we begin to address these challenges by developing a novel size-adjustable SMA-based smart tourniquet capable of producing a controllable pressure for circumferential applications. The developed prototype was tested on an inflatable pressure cuff wrapped around a rigid cylinder. The thermal activation of SMA coils was achieved through Joule heating, and a microcontroller and a programmable power supply are used to provide the input signal. To control the compression force, a closed-loop PID controller was implemented, and the performance of the system was evaluated in 5 different testing conditions for variable and cyclic compression levels. The experiments showed that the controlled system could follow the desired control pressure reference with a steady-state of 1 mmHg. The compression tourniquet is able to produce more than 33 mmHg with an average actuation rate of 0.19 mmHg/s. This is the first demonstration of accurate closed-loop control of an SMA-incorporated compression technology to the best of our knowledge. This paper enables new, dynamic systems with controllable activation and low-effort donning and doffing, with applications ranging from healthcare solutions to advanced spacesuit design.more » « less
- 
            Many medical conditions, including sensory processing disorder (SPD), employ compression therapy as a form of treatment. SPD patients often wear weighted or elastic vests to produce compression on the body, which have been shown to have a calming effect on the wearer. Recent advances in compression garment technology incorporate active materials to produce dynamic, low bulk compression garments that can be remotely controlled. In this study, an active compression vest using shape memory alloy (SMA) spring actuators was developed to produce up to 52.5 mmHg compression on a child's torso for SPD applications. The vest prototype incorporated 16 SMA spring actuators (1.25 mm diameter, spring index = 3) that constrict when heated, producing large forces and displacements that can be controlled via an applied current. When power was applied (up to 43.8 W), the prototype vest generated increasing magnitudes of pressure (up to 37.6 mmHg, spatially averaged across the front of the torso) on a representative child-sized form. The average pressure generated was measured up to 71.6% of the modeled pressure, and spatial pressure nonuniformities were observed that can be traced to specific garment architectural features. Although there is no consistent standard in magnitude or distribution of applied force in compression therapy garments, it is clear from comparative benchmarks that the compression produced by this garment exceeds the demands of the target application. This study demonstrates the viability of SMA-based compression garments as an enabling technology for enhancing SPD (and other compression-based) treatment.more » « less
- 
            Laminated multifunctional composites are highly desired in modern lightweight engineering structures. The purpose of this study is to develop a composite laminate with impact tolerance, delamination healing, strain sensing, Joule heating, deicing, and room temperature shape restoration functionalities. In this study, a novel self-healable and recyclable shape memory vitrimer was used as the matrix, unidirectional glass fabric was used as reinforcement, and tension programmed shape memory alloy (SMA) wires were used as z-pins. To provide multifunctionality, the programmed SMA wires were further twisted and formed into sinusoidal shape. Copper wire strands were hooked to the sinusoidal SMA z-pins to make them a closed circuit. Low velocity impact, compression after impact, damage self-healing, deicing, and room temperature shape restoration tests were conducted. The tests result show that the desired multifunctionality of the laminated composite was achieved. The hybrid laminate provides a promising design for lightweight load-carrying engineering structures.more » « less
- 
            The authors reveal a thermal actuating bilayer that undergoes reversible deformation in response to low-energy thermal stimuli, for example, a few degrees of temperature increase. It is made of an aligned carbon nanotube (CNT) sheet covalently connected to a polymer layer in which dibenzocycloocta-1,5-diene (DBCOD) actuating units are oriented parallel to CNTs. Upon exposure to low-energy thermal stimulation, coordinated submolecular-level conformational changes of DBCODs result in macroscopic thermal contraction. This unique thermal contraction offers distinct advantages. It’s inherently fast, repeatable, low-energy driven, and medium independent. The covalent interface and reversible nature of the conformational change bestow this bilayer with excellent repeatability, up to at least 70 000 cycles. Unlike conventional CNT bilayer systems, this system can achieve high precision actuation readily and can be scaled down to nanoscale. A new platform made of poly(vinylidene fluoride) (PVDF) in tandem with the bilayer can harvest low-grade thermal energy and convert it into electricity. The platform produces 86 times greater energy than PVDF alone upon exposure to 6 °C thermal fluctuations above room temperature. This platform provides a pathway to low-grade thermal energy harvesting. It also enables low-energy driven thermal artificial robotics, ultrasensitive thermal sensors, and remote controlled near infrared (NIR) driven actuators.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    