- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
BLAGOJEVIĆ, PAVLE V. (1)
-
PALIĆ, NEVENA (1)
-
SOBERÓN, PABLO (1)
-
ZIEGLER, GÜNTER M. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Holmsen, Kynčl and Valculescu recently conjectured that if a finite set $$X$$ with $$\ell n$$ points in $$\mathbb{R}^{d}$$ that is colored by $$m$$ different colors can be partitioned into $$n$$ subsets of $$\ell$$ points each, such that each subset contains points of at least $$d$$ different colors, then there exists such a partition of $$X$$ with the additional property that the convex hulls of the $$n$$ subsets are pairwise disjoint. We prove a continuous analogue of this conjecture, generalized so that each subset contains points of at least $$c$$ different colors, where we also allow $$c$$ to be greater than $$d$$ . Furthermore, we give lower bounds on the fraction of the points each of the subsets contains from $$c$$ different colors. For example, when $$n\geqslant 2$$ , $$d\geqslant 2$$ , $$c\geqslant d$$ with $$m\geqslant n(c-d)+d$$ are integers, and $$\unicode[STIX]{x1D707}_{1},\ldots ,\unicode[STIX]{x1D707}_{m}$$ are $$m$$ positive finite absolutely continuous measures on $$\mathbb{R}^{d}$$ , we prove that there exists a partition of $$\mathbb{R}^{d}$$ into $$n$$ convex pieces which equiparts the measures $$\unicode[STIX]{x1D707}_{1},\ldots ,\unicode[STIX]{x1D707}_{d-1}$$ , and in addition every piece of the partition has positive measure with respect to at least $$c$$ of the measures $$\unicode[STIX]{x1D707}_{1},\ldots ,\unicode[STIX]{x1D707}_{m}$$ .more » « less
An official website of the United States government
