We examine correlations of the Möbius function over $$\mathbb{F}_{q}[t]$$ with linear or quadratic phases, that is, averages of the form 1 $$\begin{eqnarray}\frac{1}{q^{n}}\mathop{\sum }_{\deg f0$$ if $$Q$$ is linear and $$O(q^{-n^{c}})$$ for some absolute constant $c>0$ if $$Q$$ is quadratic. The latter bound may be reduced to $$O(q^{-c^{\prime }n})$$ for some $$c^{\prime }>0$$ when $Q(f)$ is a linear form in the coefficients of $$f^{2}$$ , that is, a Hankel quadratic form, whereas, for general quadratic forms, it relies on a bilinear version of the additive-combinatorial Bogolyubov theorem. 
                        more » 
                        « less   
                    
                            
                            CUTTING A PART FROM MANY MEASURES
                        
                    
    
            Holmsen, Kynčl and Valculescu recently conjectured that if a finite set $$X$$ with $$\ell n$$ points in $$\mathbb{R}^{d}$$ that is colored by $$m$$ different colors can be partitioned into $$n$$ subsets of $$\ell$$ points each, such that each subset contains points of at least $$d$$ different colors, then there exists such a partition of $$X$$ with the additional property that the convex hulls of the $$n$$ subsets are pairwise disjoint. We prove a continuous analogue of this conjecture, generalized so that each subset contains points of at least $$c$$ different colors, where we also allow $$c$$ to be greater than $$d$$ . Furthermore, we give lower bounds on the fraction of the points each of the subsets contains from $$c$$ different colors. For example, when $$n\geqslant 2$$ , $$d\geqslant 2$$ , $$c\geqslant d$$ with $$m\geqslant n(c-d)+d$$ are integers, and $$\unicode[STIX]{x1D707}_{1},\ldots ,\unicode[STIX]{x1D707}_{m}$$ are $$m$$ positive finite absolutely continuous measures on $$\mathbb{R}^{d}$$ , we prove that there exists a partition of $$\mathbb{R}^{d}$$ into $$n$$ convex pieces which equiparts the measures $$\unicode[STIX]{x1D707}_{1},\ldots ,\unicode[STIX]{x1D707}_{d-1}$$ , and in addition every piece of the partition has positive measure with respect to at least $$c$$ of the measures $$\unicode[STIX]{x1D707}_{1},\ldots ,\unicode[STIX]{x1D707}_{m}$$ . 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1851420
- PAR ID:
- 10157302
- Date Published:
- Journal Name:
- Forum of Mathematics, Sigma
- Volume:
- 7
- ISSN:
- 2050-5094
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Let $$\unicode[STIX]{x1D6FC}\in \mathbb{R}\backslash \mathbb{Q}$$ and $$\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})=\limsup _{n\rightarrow \infty }(\ln q_{n+1})/q_{n}<\infty$$ , where $$p_{n}/q_{n}$$ is the continued fraction approximation to $$\unicode[STIX]{x1D6FC}$$ . Let $$(H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}u)(n)=u(n+1)+u(n-1)+2\unicode[STIX]{x1D706}\cos 2\unicode[STIX]{x1D70B}(\unicode[STIX]{x1D703}+n\unicode[STIX]{x1D6FC})u(n)$$ be the almost Mathieu operator on $$\ell ^{2}(\mathbb{Z})$$ , where $$\unicode[STIX]{x1D706},\unicode[STIX]{x1D703}\in \mathbb{R}$$ . Avila and Jitomirskaya [The ten Martini problem. Ann. of Math. (2), 170 (1) (2009), 303–342] conjectured that, for $$2\unicode[STIX]{x1D703}\in \unicode[STIX]{x1D6FC}\mathbb{Z}+\mathbb{Z}$$ , $$H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}$$ satisfies Anderson localization if $$|\unicode[STIX]{x1D706}|>e^{2\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})}$$ . In this paper, we develop a method to treat simultaneous frequency and phase resonances and obtain that, for $$2\unicode[STIX]{x1D703}\in \unicode[STIX]{x1D6FC}\mathbb{Z}+\mathbb{Z}$$ , $$H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}$$ satisfies Anderson localization if $$|\unicode[STIX]{x1D706}|>e^{3\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})}$$ .more » « less
- 
            In this paper, we study the mixed Littlewood conjecture with pseudo-absolute values. For any pseudo-absolute-value sequence $${\mathcal{D}}$$ , we obtain a sharp criterion such that for almost every $$\unicode[STIX]{x1D6FC}$$ the inequality $$\begin{eqnarray}|n|_{{\mathcal{D}}}|n\unicode[STIX]{x1D6FC}-p|\leq \unicode[STIX]{x1D713}(n)\end{eqnarray}$$ has infinitely many coprime solutions $$(n,p)\in \mathbb{N}\times \mathbb{Z}$$ for a certain one-parameter family of $$\unicode[STIX]{x1D713}$$ . Also, under a minor condition on pseudo-absolute-value sequences $${\mathcal{D}}_{1},{\mathcal{D}}_{2},\ldots ,{\mathcal{D}}_{k}$$ , we obtain a sharp criterion on a general sequence $$\unicode[STIX]{x1D713}(n)$$ such that for almost every $$\unicode[STIX]{x1D6FC}$$ the inequality $$\begin{eqnarray}|n|_{{\mathcal{D}}_{1}}|n|_{{\mathcal{D}}_{2}}\cdots |n|_{{\mathcal{D}}_{k}}|n\unicode[STIX]{x1D6FC}-p|\leq \unicode[STIX]{x1D713}(n)\end{eqnarray}$$ has infinitely many coprime solutions $$(n,p)\in \mathbb{N}\times \mathbb{Z}$$ .more » « less
- 
            null (Ed.)Let $$f:X\rightarrow X$$ be a continuous dynamical system on a compact metric space $$X$$ and let $$\unicode[STIX]{x1D6F7}:X\rightarrow \mathbb{R}^{m}$$ be an $$m$$ -dimensional continuous potential. The (generalized) rotation set $$\text{Rot}(\unicode[STIX]{x1D6F7})$$ is defined as the set of all $$\unicode[STIX]{x1D707}$$ -integrals of $$\unicode[STIX]{x1D6F7}$$ , where $$\unicode[STIX]{x1D707}$$ runs over all invariant probability measures. Analogous to the classical topological entropy, one can associate the localized entropy $$\unicode[STIX]{x210B}(w)$$ to each $$w\in \text{Rot}(\unicode[STIX]{x1D6F7})$$ . In this paper, we study the computability of rotation sets and localized entropy functions by deriving conditions that imply their computability. Then we apply our results to study the case where $$f$$ is a subshift of finite type. We prove that $$\text{Rot}(\unicode[STIX]{x1D6F7})$$ is computable and that $$\unicode[STIX]{x210B}(w)$$ is computable in the interior of the rotation set. Finally, we construct an explicit example that shows that, in general, $$\unicode[STIX]{x210B}$$ is not continuous on the boundary of the rotation set when considered as a function of $$\unicode[STIX]{x1D6F7}$$ and $$w$$ . In particular, $$\unicode[STIX]{x210B}$$ is, in general, not computable at the boundary of $$\text{Rot}(\unicode[STIX]{x1D6F7})$$ .more » « less
- 
            For each $$t\in \mathbb{R}$$ , we define the entire function $$\begin{eqnarray}H_{t}(z):=\int _{0}^{\infty }e^{tu^{2}}\unicode[STIX]{x1D6F7}(u)\cos (zu)\,du,\end{eqnarray}$$ where $$\unicode[STIX]{x1D6F7}$$ is the super-exponentially decaying function $$\begin{eqnarray}\unicode[STIX]{x1D6F7}(u):=\mathop{\sum }_{n=1}^{\infty }(2\unicode[STIX]{x1D70B}^{2}n^{4}e^{9u}-3\unicode[STIX]{x1D70B}n^{2}e^{5u})\exp (-\unicode[STIX]{x1D70B}n^{2}e^{4u}).\end{eqnarray}$$ Newman showed that there exists a finite constant $$\unicode[STIX]{x1D6EC}$$ (the de Bruijn–Newman constant ) such that the zeros of $$H_{t}$$ are all real precisely when $$t\geqslant \unicode[STIX]{x1D6EC}$$ . The Riemann hypothesis is equivalent to the assertion $$\unicode[STIX]{x1D6EC}\leqslant 0$$ , and Newman conjectured the complementary bound $$\unicode[STIX]{x1D6EC}\geqslant 0$$ . In this paper, we establish Newman’s conjecture. The argument proceeds by assuming for contradiction that $$\unicode[STIX]{x1D6EC}<0$$ and then analyzing the dynamics of zeros of $$H_{t}$$ (building on the work of Csordas, Smith and Varga) to obtain increasingly strong control on the zeros of $$H_{t}$$ in the range $$\unicode[STIX]{x1D6EC}more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    