skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "PASSCHIER, Sandra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Major and trace element geochemistry of lower Pliocene marine sediment core samples collected at International Ocean Discovery Program Site U1532 in the Amundsen Sea via ICP-MS. Bulk samples of mud or sandy mud were analyzed to assess sediment provenance using elemental ratios. The geochemical data were collected and analyzed by Ronald Leon and Sandra Passchier, assisted by Jessica Scheinbaum in sample preparations, and Xiaona Li in the ICP-MS analytical work. 
    more » « less
  2. Major and trace element geochemistry of lower Pliocene marine sediment core samples collected at International Ocean Discovery Program Site U1533 in the Amundsen Sea via ICP-MS. Bulk samples of mud or sandy mud were analyzed to assess sediment provenance using elemental ratios. The geochemical data were collected and analyzed by Olga Libman-Roshal and Sandra Passchier, assisted by Xiaona Li in the ICP-MS analytical work. 
    more » « less
  3. This dataset contains measurements of particle-size distributions on sediment from International Ocean Discovery Program Site U1533. Carbonate, and organic matter were removed through addition of 10mL aliquots of 30% H2O2 and 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.6 (Illite) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles. 
    more » « less
  4. This dataset contains 40Ar/39Ar measurements on detrital mineral grains from ice-rafted detritus at International Ocean Discovery Program Sites U1532 and U1533 in the Amundsen Sea sector. The depositional age of the sediments is early Pliocene. 
    more » « less
  5. Abstract Mass loss from polar ice sheets is poorly constrained in estimates of future global sea-level rise. Today, the marine-based West Antarctic Ice Sheet is losing mass at an accelerating rate, most notably in the Thwaites and Pine Island glacier drainage basins. Early Pliocene surface temperatures were about 4 °C warmer than preindustrial and maximum sea level stood ~20 m above present. Using data from a sediment archive on the Amundsen Sea continental rise, we investigate the impact of prolonged Pliocene ocean warmth on the ice-sheet−ocean system. We show that, in contrast to today, during peak ocean warming ~4.6 − 4.5 Ma, terrigenous muds accumulated rapidly under a weak bottom current regime after spill-over of dense shelf water with high suspended load down to the rise. From sediment provenance data we infer major retreat of the Thwaites Glacier system at ~4.4 Ma several hundreds of km inland from its present grounding line position, highlighting the potential for major Earth System changes under prolonged future warming. 
    more » « less
  6. Abstract The greenhouse to icehouse transition at the Eocene-Oligocene boundary (34 Ma) marked the appearance of continental-scale glaciation in Antarctica. The material recovered from Ocean Drilling Program Site 696 is the only record spanning this major climatic shift in the Weddell Sea region. Using scanning electron microscopy, quartz microtextures in 13 samples across the Eocene-Oligocene transition were analyzed to understand the degree of glacial modification and the transportation history of the >150 µm material. The quartz grains were visually grouped, characterized, and interpreted by grain outline, relief, and surface microtextures. Glacial textures are present throughout the entire interval (34.4–33.2 Ma), with the proportion of iceberg-rafted grains in each sample decreasing into the early Oligocene (33.6 Ma), accompanied by an increase in the frequency of eolian and sea-ice-rafted grains. Mass accumulation rates reveal that the flux of iceberg-rafted debris increased coincident with the flux of eolian and sea-ice-rafted grains following 33.6 Ma, suggesting a strong coupling between land-ice development and high-latitude atmospheric processes. When compared with other Antarctic climate proxy data sets, the intensification of ice rafting at Site 696 occurred after ice-sheet inception in East Antarctica. The prominent influx of terrigenous material after 33.6 Ma points to strengthened glacial conditions accompanied by major changes in the environment of the Weddell Sea region, supporting the idea of a high-latitude role in climate perturbations, in agreement with interpretations of other global proxies. 
    more » « less
  7. The stability of the West Antarctic Ice Sheet (WAIS), crucial for predicting future sea-level rise, is threatened by ocean-forced melting in the Pacific sector of the Southern Ocean. While some geological records and ice-sheet models suggest WAIS retreat during past warm periods, reliable data constraining the extent of retreat are lacking. Detrital Nd, Sr, and Pb isotope data of sediments recently drilled at International Ocean Discovery Program (IODP) Site U1532 on the Amundsen Sea continental rise manifest repeated alternations in sediment provenance during glacial–interglacial cycles of the Pliocene (5.33 to 2.58 Mya), a time warmer than present. The variations reflect large fluctuations in WAIS extent on the Antarctic continent. A unique high Pb/low εNdsignature of sediments found at the onset of glacial intervals (3.88, 3.6, and 3.33 Ma) is attributed to the supply of detritus sourced from plutonic rocks located in the West Antarctic interior. Its isotopic signature at Site U1532 indicates major inland retreat of the WAIS during the preceding interglacials. During peak interglacials, the ice margin had retreated inland, and icebergs rafted and deposited inland-sourced detritus over 500 km across the Amundsen Sea shelf. Subsequent readvance of grounded ice then “bulldozed” these inland-derived fine-grained sediments from the shelf down to the continental slope and rise, resulting in a high Pb/low εNdpeak in the rise sediments. Our continuous Pliocene records provide conclusive evidence for at least five major inland retreat events of the WAIS, highlighting the significant vulnerability of the WAIS to ongoing warming. 
    more » « less
    Free, publicly-accessible full text available December 22, 2026
  8. Abstract The Eocene-Oligocene Transition atc.34 million years ago (Ma) marked the global change from greenhouse to icehouse and the establishment of the East Antarctic Ice Sheet (EAIS). How the ice-sheet behaviour changed during interglacials across this climate transition is poorly understood. We analysed major, trace and rare earth elemental data of late Eocene interglacial mudstone from Prydz Bay at Ocean Drilling Program Site 1166 and early Oligocene interglacial mudstone from Integrated Ocean Drilling Program Site U1360 on the Wilkes Land continental shelf. Both sites have comparable glaciomarine depositional settings. Lithofacies and provenance at Site 1166 in Prydz Bay are indicative of a late Eocene glacial retreat in the Lambert Graben. Palaeoclimate proxies, including the Chemical Index of Alteration, mean annual temperature and mean annual precipitation, show a dominant warm and humid palaeoclimate for the late Eocene interglacial. In contrast, at Site U1360, in the early Oligocene, the provenance and interglacial weathering regime remained relatively stable with conditions of physical weathering. These results confirm that the EAIS substantially retreated periodically during late Eocene interglacials and that subglacial basins probably remained partially glaciated during interglacials in the earliest Oligocene. 
    more » « less
  9. Pliocene sediments were recovered during IODP Expedition 379 within the Resolution Drift offshore the Amundsen Sea. Site U1533 was drilled on the margin of a submarine channel extending landward to the continental margin, and Site U1532 was drilled in a more distal position on the thicker portion of the drift. We present new data collected on both sites. Facies assemblages consist of greenish gray clast-bearing mud with a biosiliceous component, interbedded with dark brownish gray laminated silty clay. Due to the close proximity of Sites U1532 and U1533 and the continuous sedimentation in the early Pliocene, individual beds of each facies can be correlated between sites. The red-green channel (a*) in shipboard reflectance spectroscopy and colorimetry data for Site U1533 covaries with the facies descriptions, Ba/Rb and Br in XRF data, ICP-MS bulk elemental ratios such as Sm/Zr, and clay mineralogy. This suggests that a more greenish color of the facies is partially attributed to a larger biogenic component in the sediment relative to the terrigenous supply, and a different provenance from the gray facies. Terrigenous particle size distributions (0-2000 mu) of Site U1533 show that the gray facies are relatively uniform silty clay, whereas greenish gray units show more variability, and a sand component. Sand-rich beds are present in both facies between the top of the greenish units and the bottom of the overlying gray units, and these have a uniform fine-sand mode. Greenish gray units are tentatively interpreted as deposition during ice retreat, with reduced terrigenous supply and higher primary productivity. Although these greenish grey facies can be interpreted as interglacial units, beds with this character do not occur evenly spaced throughout the stratigraphy. Greenish grey facies coincide with low Al/Ti ratios in XRF data for Site U1533. However, Al/Ti ratios change over evenly spaced intervals with orbital frequency and likely record a more complete record of glacial-interglacial cyclicity in sediment delivery than the irregular occurrence of greenish grey facies. This would suggest that some early Pliocene interglacials did not yield suitable conditions for the deposition of the greenish gray facies, and highlights the complex interactions between the ice sheet and the ocean embedded within these paleoarchives. PLAIN LANGUAGE SUMMARY Layers of sediment extracted via deep-sea drilling from beneath the seafloor off the Amundsen Sea, Antarctica, were stacked up over millions of years. The layers were built by pulses of sediment supplied from land ice and biogenic blooms, with distribution of material by ocean currents. The changing color and composition of the layers is an indication of the dominant imprint of ice-related processes versus ocean processes on the sediments that were raining down on the seafloor at any given time. Sedimentation related to the ice and the ocean follows different rhythms related to distribution of heat over time at different latitudes on Earth. The climate archive studied here records how the interference of these rhythms produces ice ages in Antarctica in a previous warm period about 3 to 5 million years ago with atmospheric greenhouse conditions that were like those of today. Investigations of these polar geological climate archives help provide context for the current ice mass loss observed in this same area of Antarctica and its potential sea-level effects. 
    more » « less