skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Padullés, Ramon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Convective transition statistics serve as diagnostics for the parameterization of convection in climate and weather forecast models by characterizing the dependence of convection on the humidity-temperature environment. The observed strong pickup of precipitation as a function of layer-averaged water vapor and temperature is captured in models with varying accuracy. For independent observational verification, a low-Earth orbiting satellite constellation of Global Navigation Satellite System (GNSS) polarimetric radio occultation (PRO) measurements would be spaced such that adjacent RO would capture different profiles within and immediately adjacent to convection. Here, the number of profile observations needed to distinguish between convective transition relations by different tropospheric temperature ranges is determined, over different tropical oceanic basins. To obtain these, orbit simulations were performed by flying different satellite constellations over global precipitation from the Global Precipitation Measurement (GPM) mission, varying the numbers of satellites, orbit altitude, and inclination. A 45-degree orbit inclination was found to be a good tradeoff between maximizing the number of observations collected per day, and the desired 50–150-km spacing between individual RO ray paths. Assuming a set of reasonable assumptions for net data yield, three tropospheric temperatures can be distinguished by 1 K with a six-month on-orbit duration from a constellation of at least three satellites. 
    more » « less
  2. Abstract The transition to deep convection and associated precipitation is often studied in relationship to the associated column water vapor owing to the wide availability of these data from various ground or satellite-based products. Based on radiosonde and ground-based Global Navigation Satellite System (GNSS) data examined at limited locations and model comparison studies, water vapor at different vertical levels is conjectured to have different relationships to convective intensity. Here, the relationship between precipitation and water vapor in different free tropospheric layers is investigated using globally distributed GNSS radio occultation (RO) temperature and moisture profiles collocated with GPM IMERG precipitation across the tropical latitudes. A key feature of the RO measurement is its ability to directly sense in and near regions of heavy precipitation and clouds. Sharp pickups (i.e. sudden increases) of conditionally averaged precipitation as a function of water vapor in different tropospheric layers are noted for a variety of tropical ocean and land regions. The layer-integrated water vapor value at which this pickup occurs has a dependence on temperature that is more complex than constant RH, with larger subsaturation at warmer temperatures. These relationships of precipitation to its thermodynamic environment for different layers can provide a baseline for comparison with climate model simulations of the convective onset. Furthermore, vertical profiles before, during, and after convection are consistent with the hypothesis that the lower troposphere plays a causal role in the onset of convection, while the upper troposphere is moistened by de-trainment from convection. 
    more » « less
  3. Abstract Observationally, a major source of uncertainty in evaluation of climate models arises from the difficulty in obtaining globally distributed, fine scale profiles of temperature, pressure and water vapor, that probe through convective precipitating clouds, from the boundary layer to the upper levels of the free troposphere. In this manuscript, a two-year analysis of data from the Radio Occultations through Heavy Precipitation (ROHP) polarimetric RO demonstration mission onboard the Spanish PAZ spacecraft is presented. ROHP measures the difference in the differential propagation phase delay (Δ 𝜙 ) between two orthogonal polarization receive states that is induced from the presence of non-spherically shaped hydrometeors along the Global Navigation Satellite System (GNSS) propagation path, complementing the standard RO thermodynamic profile. Since Δφ is a net path-accumulated depolarization and does not resolve the precipitation structure along the propagation path, orbital coincidences between ROHP and the Global Precipitation Measurement (GPM) constellation passive MW radiometers are identified to provides three-dimensional precipitation context to the RO thermodynamic profile. Passive MW-derived precipitation profiles are used to simulate the Δ φ along the ROHP propagation paths. Comparison between the simulated and observed Δ φ are indicative of the ability of ROHP to detect threshold levels of ray path-averaged condensed water content, as well as to suggest possible inferences on the average ice phase hydrometeor non-sphericity. The use of the polarimetric RO vertical structure is demonstrated as a means to condition the lower tropospheric humidity by the top-most height of the associated convective cloud structure. 
    more » « less