skip to main content

Search for: All records

Creators/Authors contains: "Page, Katharine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    At elevated temperatures SnSe is reported to undergo a structural transition from the low symmetry orthorhombic GeS-type to a higher symmetry orthorhombic TlI-type. Although increasing symmetry should likewise increase lattice thermal conductivity, many experiments on single crystals and polycrystalline materials indicate that this is not the case. Here we present temperature dependent analysis of time-of-flight (TOF) neutron total scattering data in combination with theoretical modeling to probe the local to long-range evolution of the structure. We report that while SnSe is well characterized on average within the high symmetry space group above the transition, over length scales of a few unit cells SnSe remains better characterized in the low symmetry GeS-type space group. Our finding from robust modeling provides further insight into the curious case of a dynamic order-disorder phase transition in SnSe, a model consistent with the soft-phonon picture of the high thermoelectric power above the phase transition.

    more » « less
  2. Polar nanoregions (PNRs) are believed to play a decisive role in the local and macroscopic polarization in relaxor ferroelectrics. The limited microscopic understanding of the structure and dynamics of PNRs hampers the rational design of new lead-free materials. Here, the local structure of A-site disordered Bi 0.5 K 0.5 TiO 3 (BKT) is investigated using synchrotron x-ray and neutron pair distribution function (PDF) analysis and density functional theory (DFT) optimized special quasirandom structures (SQSs). DFT-relaxed SQS with a 4 × 4 × 4 supercell size can reproduce the experimental PDFs of disordered BKT, as well as the partial PDFs and total polarization, with comparable results to those reported from a combined analysis of x-ray and neutron PDF data with large-box reverse Monte Carlo methods. We find that small Bi 3+ -rich polar clusters are likely to be the microscopic origin of relaxor behavior in disordered BKT, and that the existence of large polar nanoregions (PNRs) is not necessary to explain the relaxor properties. Our results also highlight the great potential of the SQS approach to gain a nanoscale-to-microscopic understanding of other relaxor solid solutions. 
    more » « less
  3. We present an exploration of a family of compositionally complex cubic spinel ferrites featuring combinations of Mg, Fe, Co, Ni, Cu, Mn, and Zn cations, systematically investigating the average and local atomic structures, chemical short-range order, magnetic spin configurations, and magnetic properties. All compositions result in ferrimagnetic average structures with extremely similar local bonding environments; however, the samples display varying degrees of cation inversion and, therefore, differing apparent bulk magnetization. Additionally, first-order reversal curve analysis of the magnetic reversal behavior indicates varying degrees of magnetic ordering and interactions, including potentially local frustration. Finally, reverse Monte Carlo modeling of the spin orientation demonstrates a relationship between the degree of cation inversion and the spin collinearity. Collectively, these observations correlate with differences in synthesis procedures. This work provides a framework for understanding magnetic behavior reported for “high-entropy spinels,” revealing many are likely compositionally complex oxides with differing degrees of chemical short-range order—not meeting the community established criteria for high or medium entropy compounds. Moreover, this work highlights the importance of reporting complete sample processing histories and investigating local to long-range atomic arrangements when evaluating potential entropic mixing effects and assumed property correlations in high entropy materials. 
    more » « less
  4. High entropy oxides are emerging as an exciting new avenue to design highly tailored functional behaviors that have no traditional counterparts. Study and application of these materials are bringing together scientists and engineers from physics, chemistry, and materials science. The diversity of each of these disciplines comes with perspectives and jargon that may be confusing to those outside of the individual fields, which can result in miscommunication of important aspects of research. In this Perspective, we provide examples of research and characterization taken from these different fields to provide a framework for classifying the differences between compositionally complex oxides, high entropy oxides, and entropy stabilized oxides, which is intended to bring a common language to this emerging area. We highlight the critical importance of understanding a material’s crystallinity, composition, and mixing length scales in determining its true definition. 
    more » « less
  5. Surface functionalized barium titanate (BaTiO 3 ) nanocrystals have been explored for highly tunable chemical and electronic properties, potentially of use in ceramic-polymer composites for flexible ferroelectric device applications, directed synthesis of ferroelectric thin films or other nano-architectures, and other potential applications. The detailed temperature dependent local structure evolution of BaTiO 3 nanocubes capped with nonpolar oleic acid (OA) and polar tetrafluoroborate (BF 4 − ) ligands are investigated using in situ synchrotron X-ray diffraction and pair distribution function (PDF) analysis, in conjunction with piezoresponse force microscopy (PFM) and 137 Ba nuclear magnetic resonance (NMR) spectroscopy measurements. Diffraction analysis reveals that nanocubes capped by polar BF 4 − ligands undergo sharper ferroelectric to paraelectric phase transitions than nanocubes capped with nonpolar OA ligands, with the smallest ∼12 nm nanocubes displaying no transition. Local non-centrosymmetric symmetry is observed by PDF analysis and confirmed by NMR, persisting across the phase transition temperature. Local distortion analysis, manifested in tetragonality ( c / a ) and Ti off-centering ( z Ti ) parameters, reveals distinct temperature and length-scale dependencies with particle size and capping group. Ferroelectric order is increased by polar BF 4 − ligands, which is corroborated by an enhancement of PFM response. 
    more » « less
  6. null (Ed.)
    A series of Al2O3-supported Fe-containing catalysts were synthesized by incipient wetness impregnation. The iron surface density was varied from 1 to 13 Fe atoms/nm2 spanning sub- and above-monolayer coverage. The resulting supported Fe-catalysts were characterized with N2 physisorption, ex situ XRD, PDF, XAS, AC-STEM and chemically probed by H2-TPR. The results suggest that over this entire range of loadings, Fe was present as dispersed species, with only a very small fraction of Fe2O3 aggregates, at the highest Fe loading. The in situ sulfidation of Fe/Al2O3 resulted in the formation of a highly active and selective PDH catalyst. The highest activity with 52% propane conversion and ~99% propylene selectivity at 560 °C was obtained for the 6.4 Fe/Al2O3 catalyst suggesting that this is the highest amount of Fe that could be fully dispersed on the support in sulfided form. XRD and AC-STEM indicated the absence of any crystalline iron sulfide aggregates after sulfidation and reaction. H2-TPR results indicated that the amount of the reducible Fe sites in the sulfided catalyst remained constant above monolayer coverage, and increasing loading did not increase the number of reducible Fe sites. Consistent with these results, the reactivity per gram of catalyst showed no increase with Fe loading above monolayer coverage, suggesting that additional Fe remains conformal to the alumina surface. 
    more » « less