Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We demonstrate shear‐printed layered photonic films with vivid structural coloration from bio‐derived cellulose nanocrystals and highly aligned Ti3C2TxMXene nanoflakes. These ultrathin films (700–1500 nm) show high light transmittance above 40% in the visible range. In reflectance mode, however, the films appear vividly colored and iridescent due to the multiple distinct photonic bandgaps in the visible and near‐infrared ranges, which are rarely observed in CNC composites. The structural coloration is controlled by the stacking of MXene nanoscale‐thin layers separated by the thicker cellulose nanocrystals matrix, as confirmed by photonic simulations. The unique combination of distinctly different optical appearances in transmittance and reflectance modes occurs in films printed with just a few layers. This is because of the molecularly smooth interfaces and the high refractive contrast between bio‐based and inorganic phases, which result in a concurrence of constructive and destructive interference. These lamellar biophotonic films open the possibilities for advanced radiative cooling, camouflaging, multifunctional capacitors, and optical filtration applications, while the cellulose nanocrystals matrix strengthens their flexibility, robustness, and facilitates sustainability.more » « lessFree, publicly-accessible full text available January 23, 2026
-
Highly concentrated solutions of asymmetric semiconductor magic-sized clusters (MSCs) of cadmium sulfide, cadmium selenide, and cadmium telluride were directed through a controlled drying meniscus front, resulting in the formation of chiral MSC assemblies. This process aligned their transition dipole moments and produced chiroptic films with exceptionally strong circular dichroism.G-factors reached magnitudes as high as 1.30 for drop-cast films and 1.06 for patterned films, approaching theoretical limits. By controlling the evaporation geometry, various domain shapes and sizes were achieved, with homochiral domains exceeding 6 square millimeters that transition smoothly between left- and right-handed chirality. Our results uncovered fundamental relationships between meniscus deposition processes, the alignment of supramolecular filaments and their MSC constituents, and their connection to emergent chiral properties.more » « lessFree, publicly-accessible full text available January 31, 2026
An official website of the United States government
