skip to main content


Search for: All records

Creators/Authors contains: "Palafox, Fernando"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Decision-making in multi-player games can be extremely challenging, particularly under uncertainty. In this work, we propose a new sample-based approximation to a class of stochastic, general-sum, pure Nash games, where each player has an expected-value objective and a set of chance constraints. This new approximation scheme inherits the accuracy of objective approximation from the established sample average approximation (SAA) method and enjoys a feasibility guarantee derived from the scenario optimization literature. We characterize the sample complexity of this new game-theoretic approximation scheme, and observe that high accuracy usually requires a large number of samples, which results in a large number of sampled constraints. To accommodate this, we decompose the approximated game into a set of smaller games with few constraints for each sampled scenario, and propose a decentralized, consensus-based ADMM algorithm to efficiently compute a generalized Nash equilibrium (GNE) of the approximated game. We prove the convergence of our algorithm to a GNE and empirically demonstrate superior performance relative to a recent baseline algorithm based on ADMM and interior point method. 
    more » « less
    Free, publicly-accessible full text available December 13, 2024