skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pallant, Amy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 2, 2026
  2. Free, publicly-accessible full text available November 27, 2025
  3. Free, publicly-accessible full text available December 1, 2025
  4. Learning to teach is a culturally situated activity. As teachers learn, it is important to understand not only what teachers learn, but how they learn. This article describes a qualitative case study of a subset of four teachers’ learning during a professional development surrounding a plate tectonics curriculum. Using qualitative methods, this study tells the story of how the four teachers negotiated professional vision for science teaching around dilemmas that emerged throughout the professional development. By taking a sociocultural perspective on professional vision, researchers can gain insight into how and what teachers learn in professional develop- ment settings because it renders teacher learning complex and nuanced. Additionally, we argue negotiating professional vision parallels sensemak- ing. Sensemaking around science teaching includes grappling with epis- temic issues of science in addition to pedagogy and curriculum. Implications for science teacher education are discussed. Specifically, we argue learning to teach requires teachers to engage in conversations that create opportunities to “get somewhere” in relation to dilemmas they have about teaching. In this way, professional vision is an ongoing process of learning that has no endpoint or ideal articulation of teaching or science. Therefore, by framing professional vision as a process of learning we are able to push back on simplistic descriptions of teaching and science. 
    more » « less
  5. Explaining phenomena associated with a system involves describing a system’s structure and articulating the process through which the system’s structure changes over time. This paper defines geo-sequential reasoning in the context of plate tectonics and uses it to analyse how students explain the geological processes that occur along convergent boundaries as part of the plate tectonics system. This study was part of design- based research on an online Plate tectonics module that included simulation-based modelling developed for secondary school students. We analysed students’ explanations (n=950) about phenomena found along a convergent boundary (1) as an oceanic plate and a continental plate move towards each other and (2) between two oceanic plates located on the opposite side of a tectonic plate from a divergent boundary. We also analysed images created by students of the simulation as evidence to support their explanations. We found that a majority of students used simulation-based evidence when describing the sequence of events along the convergent boundary and that the synced planet surface and cross-section views in the simulation supported students’ inclusion of processes responsible for the events. These findings have implications for how teaching and research with dynamic simulations can support reasoning built with temporal evidence. 
    more » « less
  6. When integrated into online curriculum modules for students, educative curriculum materials (ECMs) can enhance teachers’ enactment of these modules. This study investigated (1) the use of digitally enhanced ECMs built into an online plate tectonics curriculum module by teachers with different backgrounds and teaching experience, (2) the relationship between teachers’ use of ECMs and student learning gains, and (3) teacher reflections on the value of the ECMs they used. We studied 26 teachers who taught middle and high school students (n = 1,098) by analyzing teacher log files automatically generated by the ECMs, teacher reflections collected with post-implementation surveys and interviews, student log files, and student learning gains from pretest to posttest. Results indicate that (1) there were large variations in the amounts and types of ECM features teachers accessed, (2) middle school teachers accessed significantly more ECM features than high school teachers p < .01, (3) students of teachers who used ECMs during class time made significantly higher learning gains than students of teachers who used them only before and/or between class time, p < .05, and (4) teachers most valued ECM features on student assessment. An overall non-significant, but positive, correlation between the total teacher interactions with ECMs and student learning gains was observed, r = 0.20, p = .32. 
    more » « less
  7. Abstract Practitioners and researchers in geoscience education embrace collaboration applying ICON (Integrated, Coordinated, Open science, and Networked) principles and approaches which have been used to create and share large collections of educational resources, to move forward collective priorities, and to foster peer‐learning among educators. These strategies can also support the advancement of coproduction between geoscientists and diverse communities. For this reason, many authors from the geoscience education community have co‐created three commentaries on the use and future of ICON in geoscience education. We envision that sharing our expertise with ICON practice will be useful to other geoscience communities seeking to strengthen collaboration. Geoscience education brings substantial expertise in social science research and its application to building individual and collective capacity to address earth sustainability and equity issues at local to global scales The geoscience education community has expanded its own ICON capacity through access to and use of shared resources and research findings, enhancing data sharing and publication, and leadership development. We prioritize continued use of ICON principles to develop effective and inclusive communities that increase equity in geoscience education and beyond, support leadership and full participation of systemically non‐dominant groups and enable global discussions and collaborations. 
    more » « less