- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
20010
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Pallavoor, Ramesh Krishnan (3)
-
Raskhodnikova, Sofya (3)
-
Baleshzar, Roksana (1)
-
Chakrabarty, Deeparnab (1)
-
Levi, Amit (1)
-
Seshadhri, C. (1)
-
Varma, Nithin (1)
-
Waingarten, Erik (1)
-
#Tyler Phillips, Kenneth E. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
2022 USENIX Annual Technical Conference (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Baleshzar, Roksana ; Chakrabarty, Deeparnab ; Pallavoor, Ramesh Krishnan ; Raskhodnikova, Sofya ; Seshadhri, C. ( , Theory of Computing)null (Ed.)
-
Pallavoor, Ramesh Krishnan ; Raskhodnikova, Sofya ; Waingarten, Erik ( , Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020)We design a nonadaptive algorithm that, given a Boolean function f: {0, 1}^n → {0, 1} which is α-far from monotone, makes poly(n, 1/α) queries and returns an estimate that, with high probability, is an O-tilde(\sqrt{n})-approximation to the distance of f to monotonicity. Furthermore, we show that for any constant k > 0, approximating the distance to monotonicity up to n^(1/2−k)-factor requires 2^{n^k} nonadaptive queries, thereby ruling out a poly(n, 1/α)-query nonadaptive algorithm for such approximations. This answers a question of Seshadhri (Property Testing Review, 2014) for the case of nonadaptive algorithms. Approximating the distance to a property is closely related to tolerantly testing that property. Our lower bound stands in contrast to standard (non-tolerant) testing of monotonicity that can be done nonadaptively with O-tilde(n/ε^2) queries. We obtain our lower bound by proving an analogous bound for erasure-resilient testers. An α-erasure-resilient tester for a desired property gets oracle access to a function that has at most an α fraction of values erased. The tester has to accept (with probability at least 2/3) if the erasures can be filled in to ensure that the resulting function has the property and to reject (with probability at least 2/3) if every completion of erasures results in a function that is ε-far from having the property. Our method yields the same lower bounds for unateness and being a k-junta. These lower bounds improve exponentially on the existing lower bounds for these properties.more » « less