skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Palm, Eric C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Rapid climate warming has contributed to significant changes in Arctic and boreal vegetation over the past half century. Changes in vegetation can impact wildlife by altering habitat and forage availability, which can affect behavior and range use. However, animals can also influence vegetation through foraging and trampling and therefore play an important role in determining ecosystem responses to climate change. As wildlife populations grow, density‐dependent processes can prompt range expansion or shifts. One mechanism for this is density‐dependent forage reduction, which can contribute to nutritional stress and population declines, and can also alter vegetation change trajectories. We assessed the range characteristics of a migratory caribou (Rangifer tarandus) herd in east‐central Alaska and west‐central Yukon Territory as it grew (1992–2017) then declined (2017–2020). Furthermore, we analyzed the correlation between caribou relative spatial density and vegetation change over this period using remotely sensed models of plant functional type cover. Over this period, caribou population density increased in all seasonal ranges. This was most acute in the calving range where density increased 8‐fold, from 1.5 to 12.0 animals km−2. Concurrent with increasing density, we documented range shifts and expansion across summer, post‐calving and winter ranges. In particular, summer range size doubled (12,000 km2increase) and overlap with core range (areas with repeated year‐round use) was halved. Meanwhile, lichen cover, a key forage item, declined more in areas with high caribou density (2.4% absolute, 22% relative decline in cover) compared to areas where caribou were mostly absent (0.3% absolute, 1.9% relative decline). Conversely, deciduous shrub cover increased more in high caribou density areas. However, increases were dominated by less palatable shrubs whereas more palatable shrubs (i.e., willow [Salixspp.]) were stable or declined slightly. These changes in vegetation cover were small relative to uncertainty in the map products used to calculate change. Nonetheless, correlations between vegetation change and caribou range characteristics, along with concerning demographic trends reported over this same period, suggest changing forage conditions may have played a role in the herd's subsequent population decline. Our research highlights the potential of remotely sensed metrics of vegetation change for assessing the impacts of herbivory and trampling and stresses the importance of in situ data such as exclosures for validating such findings. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Abstract Widespread changes in the distribution and abundance of plant functional types (PFTs) are occurring in Arctic and boreal ecosystems due to the intensification of disturbances, such as fire, and climate-driven vegetation dynamics, such as tundra shrub expansion. To understand how these changes affect boreal and tundra ecosystems, we need to first quantify change for multiple PFTs across recent years. While landscape patches are generally composed of a mixture of PFTs, most previous moderate resolution (30 m) remote sensing analyses have mapped vegetation distribution and change within land cover categories that are based on the dominant PFT; or else the continuous distribution of one or a few PFTs, but for a single point in time. Here we map a 35 year time-series (1985–2020) of top cover (TC) for seven PFTs across a 1.77 × 10 6 km 2 study area in northern and central Alaska and northwestern Canada. We improve on previous methods of detecting vegetation change by modeling TC, a continuous measure of plant abundance. The PFTs collectively include all vascular plants within the study area as well as light macrolichens, a nonvascular class of high importance to caribou management. We identified net increases in deciduous shrubs (66 × 10 3 km 2 ), evergreen shrubs (20 × 10 3 km 2 ), broadleaf trees (17 × 10 3 km 2 ), and conifer trees (16 × 10 3 km 2 ), and net decreases in graminoids (−40 × 10 3 km 2 ) and light macrolichens (−13 × 10 3 km 2 ) over the full map area, with similar patterns across Arctic, oroarctic, and boreal bioclimatic zones. Model performance was assessed using spatially blocked, nested five-fold cross-validation with overall root mean square errors ranging from 8.3% to 19.0%. Most net change occurred as succession or plant expansion within areas undisturbed by recent fire, though PFT TC change also clearly resulted from fire disturbance. These maps have important applications for assessment of surface energy budgets, permafrost changes, nutrient cycling, and wildlife management and movement analysis. 
    more » « less
  3. null (Ed.)