- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bégué, Florence (1)
-
Connor, Michelle (1)
-
Deering, Chad D. (1)
-
Ghiorso, Mark S. (1)
-
Gravley, Darren M. (1)
-
Gualda, Guilherme A. (1)
-
Hollmann, Brooke (1)
-
Pamukcu, Ayla S (1)
-
Pamukcu, Ayla S. (1)
-
Ruefer, Anna C (1)
-
Suckale, Jenny (1)
-
Wei, Zihan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Crystal‐hosted melt embayments and melt inclusions partially record magmatic processes at depth, but it is not always obvious how to interpret this record. One impediment is our incomplete understanding of how embayments and melt inclusions form. In this study, we investigate the formation mechanism of embayments and melt inclusions during quartz growth to quantify the relationship between the compositions of the entrapped and average melt. We study the growth of embayments and inclusions through direct numerical simulations that couple the growth of a crystal surface with the evolution of the concentrations of incompatible components in the surrounding melt. We find that H2O is more enriched in the interior of defects on crystal surface compared to the exterior. The resultant lower disequilibrium in the defect interior causes lower growth rate than in the exterior, elongating the defect into an embayment. If crystal growth stops, the composition in the embayment equilibrates with the average melt within days to months. If crystal growth continues until the embayment neck closes, a melt inclusion forms. The melt entrapped by both embayments and melt inclusions is enriched in incompatible components, such as H2O and CO2. In addition to inclusion size, the enrichment of incompatible components in melt inclusions also depends on component diffusivity and the crystal growth regime. High‐diffusivity components like H2O have similar enrichment levels in all scenarios, while lower‐diffusivity components like CO2are more enriched in melt inclusions with smaller sizes or formed in continuous crystal growth.more » « less
-
Gualda, Guilherme A.; Gravley, Darren M.; Connor, Michelle; Hollmann, Brooke; Pamukcu, Ayla S.; Bégué, Florence; Ghiorso, Mark S.; Deering, Chad D. (, Science Advances)Very large eruptions (>50 km 3 ) and supereruptions (>450 km 3 ) reveal Earth’s capacity to produce and store enormous quantities (>1000 km 3 ) of crystal-poor, eruptible magma in the shallow crust. We explore the interplay between crustal evolution and volcanism during a volcanic flare-up in the Taupo Volcanic Zone (TVZ, New Zealand) using a combination of quartz-feldspar-melt equilibration pressures and time scales of quartz crystallization. Over the course of the flare-up, crystallization depths became progressively shallower, showing the gradual conditioning of the crust. Yet, quartz crystallization times were invariably very short (<100 years), demonstrating that very large reservoirs of eruptible magma were transient crustal features. We conclude that the dynamic nature of the TVZ crust favored magma eruption over storage. Episodic tapping of eruptible magmas likely prevented a supereruption. Instead, multiple very large bodies of eruptible magma were assembled and erupted in decadal time scales.more » « less
An official website of the United States government
