Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The carrier excitation, relaxation, energy transport, and conversion processes during light‐nanocrystal (NC) interactions have been intensively investigated for applications in optoelectronics, photocatalysis, and photovoltaics. However, there are limited studies on the non‐equilibrium heating under relatively high laser excitation that leads to NCs sintering. Here, the authors use femtosecond laser two‐pulse correlation and in‐situ optical transmission probing to investigate the non‐equilibrium heating of NCs and transient sintering dynamics. First, a two‐pulse correlation study reveals that the sintering rate strongly increases when the two heating laser pulses are temporally separated by <10 ps. Second, the sintering rate is found to increase nonlinearly with laser fluence when heating with ≈700 fs laser pulses. By three‐temperature modeling, the NC sintering mechanism mediated by electron induced ligand transformation is suggested. The ultrafast and non‐equilibrium process facilitates sintering in dry (spin‐coated) and wet (solvent suspended) environments. The nonlinear dependence of sintering rate on laser fluence is exploited to print sub‐diffraction‐limited features in NC suspension. The smallest feature printed is ≈200 nm, which is ≈¼ of the laser wavelength. These findings provide a new perspective toward nanomanufacturing development based on probing and engineering ultrafast transport phenomena in functional NCs.
-
Abstract Physical unclonable functions (PUFs) are emerging as an alternative to information security by providing an advanced level of cryptographic keys with non‐replicable characteristics, yet the cryptographic keys of conventional PUFs are not reconfigurable from the ones assigned at the manufacturing stage and the overall authentication process slows down as the number of entities in the dataset or the length of cryptographic key increases. Herein, a supersaturated solution‐based PUF (S‐PUF) is presented that utilizes stochastic crystallization of a supersaturated sodium acetate solution to allow a time‐efficient, hierarchical authentication process together with on‐demand rewritability of cryptographic keys. By controlling the orientation and the average grain size of the sodium acetate crystals via a spatiotemporally programmed temperature profile, the S‐PUF now includes two global parameters, that is, angle of rotation and divergence of the diffracted beam, in addition to the speckle pattern to produce multilevel cryptographic keys, and these parameters function as prefixes for the classification of each entity for a fast authentication process. At the same time, the reversible phase change of sodium acetate enables repeated reconfiguration of the cryptographic key, which is expected to offer new possibilities for a next‐generation, recyclable anti‐counterfeiting platform.