skip to main content


Search for: All records

Creators/Authors contains: "Pan, Hsi-An"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Determining how the galactic environment, especially the high gas densities and complex dynamics in bar-fed galaxy centers, alters the star formation efficiency (SFE) of molecular gas is critical to understanding galaxy evolution. However, these same physical or dynamical effects also alter the emissivity properties of CO, leading to variations in the CO-to-H2conversion factor (αCO) that impact the assessment of the gas column densities and thus of the SFE. To address such issues, we investigate the dependence ofαCOon the local CO velocity dispersion at 150 pc scales using a new set of dust-basedαCOmeasurements and propose a newαCOprescription that accounts for CO emissivity variations across galaxies. Based on this prescription, we estimate the SFE in a sample of 65 galaxies from the PHANGS–Atacama Large Millimeter/submillimeter Array survey. We find increasing SFE toward high-surface-density regions like galaxy centers, while using a constant or metallicity-basedαCOresults in a more homogeneous SFE throughout the centers and disks. Our prescription further reveals a mean molecular gas depletion time of 700 Myr in the centers of barred galaxies, which is overall three to four times shorter than in nonbarred galaxy centers or the disks. Across the galaxy disks, the depletion time is consistently around 2–3 Gyr, regardless of the choice ofαCOprescription. All together, our results suggest that the high level of star formation activity in barred centers is not simply due to an increased amount of molecular gas, but also to an enhanced SFE compared to nonbarred centers or disk regions.

     
    more » « less
  2. ABSTRACT

    We study the scaling relations between gas-phase metallicity, stellar mass surface density (Σ*), star formation rate surface density (ΣSFR), and molecular gas surface density ($\Sigma _{{\rm H}_2}$) in local star-forming galaxies on scales of a kpc. We employ optical integral field spectroscopy from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, and ALMA data for a subset of MaNGA galaxies. We use partial correlation coefficients and Random Forest regression to determine the relative importance of local and global galactic properties in setting the gas-phase metallicity. We find that the local metallicity depends primarily on Σ* (the resolved mass–metallicity relation, rMZR), and has a secondary anticorrelation with ΣSFR (i.e. a spatially resolved version of the ‘Fundamental Metallicity Relation’, rFMR). We find that $\Sigma _{{\rm H}_2}$ is less important than ΣSFR in determining the local metallicity. This result indicates that gas accretion, resulting in local metallicity dilution and local boosting of star formation, is unlikely to be the primary origin of the rFMR. The local metallicity depends also on the global properties of galaxies. We find a strong dependence on the total stellar mass (M*) and a weaker (inverse) dependence on the total SFR. The global metallicity scaling relations, therefore, do not simply stem out of their resolved counterparts; global properties and processes, such as the global gravitational potential well, galaxy-scale winds and global redistribution/mixing of metals, likely contribute to the local metallicity, in addition to local production and retention.

     
    more » « less
  3. Abstract The CO-to-H 2 conversion factor ( α CO ) is central to measuring the amount and properties of molecular gas. It is known to vary with environmental conditions, and previous studies have revealed lower α CO in the centers of some barred galaxies on kiloparsec scales. To unveil the physical drivers of such variations, we obtained Atacama Large Millimeter/submillimeter Array bands (3), (6), and (7) observations toward the inner ∼2 kpc of NGC 3627 and NGC 4321 tracing 12 CO, 13 CO, and C 18 O lines on ∼100 pc scales. Our multiline modeling and Bayesian likelihood analysis of these data sets reveal variations of molecular gas density, temperature, optical depth, and velocity dispersion, which are among the key drivers of α CO . The central 300 pc nuclei in both galaxies show strong enhancement of temperature T k ≳ 100 K and density n H 2 > 10 3 cm −3 . Assuming a CO-to-H 2 abundance of 3 × 10 −4 , we derive 4–15 times lower α CO than the Galactic value across our maps, which agrees well with previous kiloparsec-scale measurements. Combining the results with our previous work on NGC 3351, we find a strong correlation of α CO with low- J 12 CO optical depths ( τ CO ), as well as an anticorrelation with T k . The τ CO correlation explains most of the α CO variation in the three galaxy centers, whereas changes in T k influence α CO to second order. Overall, the observed line width and 12 CO/ 13 CO 2–1 line ratio correlate with τ CO variation in these centers, and thus they are useful observational indicators for α CO variation. We also test current simulation-based α CO prescriptions and find a systematic overprediction, which likely originates from the mismatch of gas conditions between our data and the simulations. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  4. ABSTRACT

    Galaxy mergers are known to trigger both extended and central star formation. However, what remains to be understood is whether this triggered star formation is facilitated by enhanced star formation efficiencies (SFEs), or an abundance of molecular gas fuel. This work presents spatially resolved measurements of CO emission collected with the Atacama Large Millimetre Array (ALMA) for 20 merging galaxies (either pairs or post-mergers) selected from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. Eleven additional merging galaxies are selected from the ALMA MaNGA QUEnching and STar formation (ALMaQUEST) survey, resulting in a set of 31 mergers at various stages of interaction and covering a broad range of star formation rates (SFRs). We investigate galaxy-to-galaxy variations in the resolved Kennicutt–Schmidt relation, (rKS: $\Sigma _{\textrm {H}_2}$ versus ΣSFR), the resolved molecular gas main sequence (rMGMS: Σ⋆ versus $\Sigma _{\textrm {H}_2}$), and the resolved star-forming main sequence (rSFMS: Σ⋆ versus ΣSFR). We quantify offsets from these resolved relations to determine if SFR, molecular gas fraction, or/and SFE is/are enhanced in different regions of an individual galaxy. By comparing offsets in all three parameters, we can discern whether gas fraction or SFE powers an enhanced ΣSFR. We find that merger-induced star formation can be driven by a variety of mechanisms, both within a galaxy and between different mergers, regardless of interaction stage.

     
    more » « less
  5. ABSTRACT

    We investigate the nature of the scaling relations between the surface density of star formation rate (ΣSFR), stellar mass (Σ*), and molecular gas mass ($\Sigma _{\rm H_2}$), aiming at distinguishing between the relations that are primary, i.e. more fundamental, and those which are instead an indirect by-product of the other relations. We use the ALMA-MaNGA QUEnching and STar formation survey and analyse the data by using both partial correlations and random forest regression techniques. We unambiguously find that the strongest intrinsic correlation is between ΣSFR and $\Sigma _{\rm H_2}$ (i.e. the resolved Schmidt–Kennicutt relation), followed by the correlation between $\Sigma _{\rm H_2}$ and Σ* (resolved molecular gas main sequence, rMGMS). Once these two correlations are taken into account, we find that there is no evidence for any intrinsic correlation between ΣSFR and Σ*, implying that star formation rate (SFR) is entirely driven by the amount of molecular gas, while its dependence on stellar mass (i.e. the resolved star forming main sequence, rSFMS) simply emerges as a consequence of the relationship between molecular gas and stellar mass.

     
    more » « less
  6. Abstract

    We measure the molecular gas environment near recent (<100 yr old) supernovae (SNe) using ∼1″ or ≤150 pc resolution CO (2–1) maps from the PHANGS–Atacama Large Millimeter/submillimeter Array (ALMA) survey of nearby star-forming galaxies. This is arguably the first such study to approach the scales of individual massive molecular clouds (Mmol≳ 105.3M). Using the Open Supernova Catalog, we identify 63 SNe within the PHANGS–ALMA footprint. We detect CO (2–1) emission near ∼60% of the sample at 150 pc resolution, compared to ∼35% of map pixels with CO (2–1) emission, and up to ∼95% of the SNe at 1 kpc resolution, compared to ∼80% of map pixels with CO (2–1) emission. We expect the ∼60% of SNe within the same 150 pc beam, as a giant molecular cloud will likely interact with these clouds in the future, consistent with the observation of widespread SN–molecular gas interaction in the Milky Way, while the other ∼40% of SNe without strong CO (2–1) detections will deposit their energy in the diffuse interstellar medium, perhaps helping drive large-scale turbulence or galactic outflows. Broken down by type, we detect CO (2–1) emission at the sites of ∼85% of our 9 stripped-envelope SNe (SESNe), ∼40% of our 34 Type II SNe, and ∼35% of our 13 Type Ia SNe, indicating that SESNe are most closely associated with the brightest CO (2–1) emitting regions in our sample. Our results confirm that SN explosions are not restricted to only the densest gas, and instead exert feedback across a wide range of molecular gas densities.

     
    more » « less
  7. ABSTRACT

    In the hierarchical view of star formation, giant molecular clouds (GMCs) undergo fragmentation to form small-scale structures made up of stars and star clusters. Here we study the connection between young star clusters and cold gas across a range of extragalactic environments by combining the high resolution (1″) PHANGS–ALMA catalogue of GMCs with the star cluster catalogues from PHANGS–HST. The star clusters are spatially matched with the GMCs across a sample of 11 nearby star-forming galaxies with a range of galactic environments (centres, bars, spiral arms, etc.). We find that after 4 − 6 Myr the star clusters are no longer associated with any gas clouds. Additionally, we measure the autocorrelation of the star clusters and GMCs as well as their cross-correlation to quantify the fractal nature of hierarchical star formation. Young (≤10 Myr) star clusters are more strongly autocorrelated on kpc and smaller spatial scales than the $\gt \, 10$ Myr stellar populations, indicating that the hierarchical structure dissolves over time.

     
    more » « less
  8. ABSTRACT

    Connecting the gas in H ii regions to the underlying source of the ionizing radiation can help us constrain the physical processes of stellar feedback and how H ii regions evolve over time. With PHANGS–MUSE, we detect nearly 24 000 H ii regions across 19 galaxies and measure the physical properties of the ionized gas (e.g. metallicity, ionization parameter, and density). We use catalogues of multiscale stellar associations from PHANGS–HST to obtain constraints on the age of the ionizing sources. We construct a matched catalogue of 4177 H ii regions that are clearly linked to a single ionizing association. A weak anticorrelation is observed between the association ages and the $\mathrm{H}\, \alpha$ equivalent width $\mathrm{EW}(\mathrm{H}\, \alpha)$, the $\mathrm{H}\, \alpha/\mathrm{FUV}$ flux ratio, and the ionization parameter, log q. As all three are expected to decrease as the stellar population ages, this could indicate that we observe an evolutionary sequence. This interpretation is further supported by correlations between all three properties. Interpreting these as evolutionary tracers, we find younger nebulae to be more attenuated by dust and closer to giant molecular clouds, in line with recent models of feedback-regulated star formation. We also observe strong correlations with the local metallicity variations and all three proposed age tracers, suggestive of star formation preferentially occurring in locations of locally enhanced metallicity. Overall, $\mathrm{EW}(\mathrm{H}\, \alpha)$ and log q show the most consistent trends and appear to be most reliable tracers for the age of an H ii region.

     
    more » « less
  9. Abstract

    Polycyclic aromatic hydrocarbons (PAHs) play a critical role in the reprocessing of stellar radiation and balancing the heating and cooling processes in the interstellar medium but appear to be destroyed in Hiiregions. However, the mechanisms driving their destruction are still not completely understood. Using PHANGS–JWST and PHANGS–MUSE observations, we investigate how the PAH fraction changes in about 1500 Hiiregions across four nearby star-forming galaxies (NGC 628, NGC 1365, NGC 7496, and IC 5332). We find a strong anticorrelation between the PAH fraction and the ionization parameter (the ratio between the ionizing photon flux and the hydrogen density) of Hiiregions. This relation becomes steeper for more luminous Hiiregions. The metallicity of Hiiregions has only a minor impact on these results in our galaxy sample. We find that the PAH fraction decreases with the Hαequivalent width—a proxy for the age of the Hiiregions—although this trend is much weaker than the one identified using the ionization parameter. Our results are consistent with a scenario where hydrogen-ionizing UV radiation is the dominant source of PAH destruction in star-forming regions.

     
    more » « less
  10. Abstract

    The earliest stages of star formation, when young stars are still deeply embedded in their natal clouds, represent a critical phase in the matter cycle between gas clouds and young stellar regions. Until now, the high-resolution infrared observations required for characterizing this heavily obscured phase (during which massive stars have formed, but optical emission is not detected) could only be obtained for a handful of the most nearby galaxies. One of the main hurdles has been the limited angular resolution of the Spitzer Space Telescope. With the revolutionary capabilities of the James Webb Space Telescope (JWST), it is now possible to investigate the matter cycle during the earliest phases of star formation as a function of the galactic environment. In this Letter, we demonstrate this by measuring the duration of the embedded phase of star formation and the implied time over which molecular clouds remain inert in the galaxy NGC 628 at a distance of 9.8 Mpc, demonstrating that the cosmic volume where this measurement can be made has increased by a factor of >100 compared to Spitzer. We show that young massive stars remain embedded for5.11.4+2.7Myr (2.31.4+2.7Myr of which being heavily obscured), representing ∼20% of the total cloud lifetime. These values are in broad agreement with previous measurements in five nearby (D< 3.5 Mpc) galaxies and constitute a proof of concept for the systematic characterization of the early phase of star formation across the nearby galaxy population with the PHANGS–JWST survey.

     
    more » « less