skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pan, Shimei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 4, 2025
  2. Free, publicly-accessible full text available September 4, 2025
  3. Currently, there is a surge of interest in fair Artificial Intelligence (AI) and Machine Learning (ML) research which aims to mitigate discriminatory bias in AI algorithms, e.g., along lines of gender, age, and race. While most research in this domain focuses on developing fair AI algorithms, in this work, we examine the challenges which arise when humans and fair AI interact. Our results show that due to an apparent conflict between human preferences and fairness, a fair AI algorithm on its own may be insufficient to achieve its intended results in the real world. Using college major recommendation as a case study, we build a fair AI recommender by employing gender debiasing machine learning techniques. Our offline evaluation showed that the debiased recommender makes fairer career recommendations without sacrificing its accuracy in prediction. Nevertheless, an online user study of more than 200 college students revealed that participants on average prefer the original biased system over the debiased system. Specifically, we found that perceived gender disparity is a determining factor for the acceptance of a recommendation. In other words, we cannot fully address the gender bias issue in AI recommendations without addressing the gender bias in humans. We conducted a follow-up survey to gain additional insights into the effectiveness of various design options that can help participants to overcome their own biases. Our results suggest that making fair AI explainable is crucial for increasing its adoption in the real world. 
    more » « less
  4. We propose definitions of fairness in machine learning and artificial intelligence systems that are informed by the framework of intersectionality, a critical lens from the legal, social science, and humanities literature which analyzes how interlocking systems of power and oppression affect individuals along overlapping dimensions including gender, race, sexual orientation, class, and disability. We show that our criteria behave sensibly for any subset of the set of protected attributes, and we prove economic, privacy, and generalization guarantees. Our theoretical results show that our criteria meaningfully operationalize AI fairness in terms of real-world harms, making the measurements interpretable in a manner analogous to differential privacy. We provide a simple learning algorithm using deterministic gradient methods, which respects our intersectional fairness criteria. The measurement of fairness becomes statistically challenging in the minibatch setting due to data sparsity, which increases rapidly in the number of protected attributes and in the values per protected attribute. To address this, we further develop a practical learning algorithm using stochastic gradient methods which incorporates stochastic estimation of the intersectional fairness criteria on minibatches to scale up to big data. Case studies on census data, the COMPAS criminal recidivism dataset, the HHP hospitalization data, and a loan application dataset from HMDA demonstrate the utility of our methods. 
    more » « less
  5. null (Ed.)
    There is growing awareness that AI and machine learning systems can in some cases learn to behave in unfair and discriminatory ways with harmful consequences. However, despite an enormous amount of research, techniques for ensuring AI fairness have yet to see widespread deployment in real systems. One of the main barriers is the conventional wisdom that fairness brings a cost in predictive performance metrics such as accuracy which could affect an organization's bottom-line. In this paper we take a closer look at this concern. Clearly fairness/performance trade-offs exist, but are they inevitable? In contrast to the conventional wisdom, we find that it is frequently possible, indeed straightforward, to improve on a trained model's fairness without sacrificing predictive performance. We systematically study the behavior of fair learning algorithms on a range of benchmark datasets, showing that it is possible to improve fairness to some degree with no loss (or even an improvement) in predictive performance via a sensible hyper-parameter selection strategy. Our results reveal a pathway toward increasing the deployment of fair AI methods, with potentially substantial positive real-world impacts. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. Intersectionality is a framework that analyzes how interlocking systems of power and oppression affect individuals along overlapping dimensions including race, gender, sexual orientation, class, and disability. Intersectionality theory therefore implies it is important that fairness in artificial intelligence systems be protected with regard to multi-dimensional protected attributes. However, the measurement of fairness becomes statistically challenging in the multi-dimensional setting due to data sparsity, which increases rapidly in the number of dimensions, and in the values per dimension. We present a Bayesian probabilistic modeling approach for the reliable, data-efficient estimation of fairness with multidimensional protected attributes, which we apply to two existing intersectional fairness metrics. Experimental results on census data and the COMPAS criminal justice recidivism dataset demonstrate the utility of our methodology, and show that Bayesian methods are valuable for the modeling and measurement of fairness in intersectional contexts. 
    more » « less