skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pan, Stephen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electricity theft is a type of cyberattack posing significant risks to the security of smart grids. Semi-supervised outlier detection (SSOD) algorithms utilize normal power usage data to build detection models, enabling them to detect unknown electricity theft attacks. In this paper, we applied feature engineering and ensemble learning to improve the detection performance of SSOD algorithms. Specifically, we extracted 22 time-series and wavelet features from load profiles, which served as inputs for the seven popular SSOD algorithms investigated in this study. Experimental results demonstrate that the proposed feature engineering greatly enhances the performance of SSOD algorithms to detect various false data injection (FDI) attacks. Furthermore, we constructed bagged ensemble models using the best-performing SSOD algorithm as the base model, with results indicating further improvements in detection performance compared to the base model alone. 
    more » « less