skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhancing the Performance of Semi-supervised Electricity Theft Detection in Smart Grids with Feature Engineering and Ensemble Learning
Electricity theft is a type of cyberattack posing significant risks to the security of smart grids. Semi-supervised outlier detection (SSOD) algorithms utilize normal power usage data to build detection models, enabling them to detect unknown electricity theft attacks. In this paper, we applied feature engineering and ensemble learning to improve the detection performance of SSOD algorithms. Specifically, we extracted 22 time-series and wavelet features from load profiles, which served as inputs for the seven popular SSOD algorithms investigated in this study. Experimental results demonstrate that the proposed feature engineering greatly enhances the performance of SSOD algorithms to detect various false data injection (FDI) attacks. Furthermore, we constructed bagged ensemble models using the best-performing SSOD algorithm as the base model, with results indicating further improvements in detection performance compared to the base model alone.  more » « less
Award ID(s):
2150145
PAR ID:
10544273
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-7240-3
Page Range / eLocation ID:
1 to 6
Subject(s) / Keyword(s):
electricity theft detection (ETD) semi-supervised outlier detection (SSOD) feature engineering ensemble learning false data injection (FDI) attack smart grids
Format(s):
Medium: X
Location:
Manhattan, KS, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Smart grids are facing many challenges including cyber-attacks which can cause devastating damages to the grids. Existing machine learning based approaches for detecting cyber-attacks in smart grids are mainly based on supervised learning, which needs representative instances from various attack types to obtain good detection models. In this paper, we investigated semi-supervised outlier detection algorithms for this problem which only use instances of normal events for model training. Data collected by phasor measurement units (PMUs) was used for training the detection model. The semi-supervised outlier detection algorithms were augmented with deep feature extraction for enhanced detection performance. Our results show that semi-supervised outlier detection algorithms can perform better than popular supervised algorithms. Deep feature extraction can significantly improve the performance of semi-supervised algorithms for detecting cyber-attacks in smart grids 
    more » « less
  2. Unmanned Aerial Vehicles have been widely used in military and civilian areas. The positioning and return-to-home tasks of UAVs deliberately depend on Global Positioning Systems (GPS). However, the civilian GPS signals are not encrypted, which can motivate numerous cyber-attacks on UAVs, including Global Positioning System spoofing attacks. In these spoofing attacks, a malicious user transmits counterfeit GPS signals. Numerous studies have proposed techniques to detect these attacks. However, these techniques have some limitations, including low probability of detection, high probability of misdetection, and high probability of false alarm. In this paper, we investigate and compare the performances of three ensemble-based machine learning techniques, namely bagging, stacking, and boosting, in detecting GPS attacks. The evaluation metrics are the accuracy, probability of detection, probability of misdetection, probability of false alarm, memory size, processing time, and prediction time per sample. The results show that the stacking model has the best performance compared to the two other ensemble models in terms of all the considered evaluation metrics. 
    more » « less
  3. Unmanned aerial vehicles are prone to several cyber-attacks, including Global Positioning System spoofing. Several techniques have been proposed for detecting such attacks. However, the recurrence and frequent Global Positioning System spoofing incidents show a need for effective security solutions to protect unmanned aerial vehicles. In this paper, we propose two dynamic selection techniques, Metric Optimized Dynamic selector and Weighted Metric Optimized Dynamic selector, which identify the most effective classifier for the detection of such attacks. We develop a one-stage ensemble feature selection method to identify and discard the correlated and low importance features from the dataset. We implement the proposed techniques using ten machine-learning models and compare their performance in terms of four evaluation metrics: accuracy, probability of detection, probability of false alarm, probability of misdetection, and processing time. The proposed techniques dynamically choose the classifier with the best results for detecting attacks. The results indicate that the proposed dynamic techniques outperform the existing ensemble models with an accuracy of 99.6%, a probability of detection of 98.9%, a probability of false alarm of 1.56%, a probability of misdetection of 1.09%, and a processing time of 1.24 s. 
    more » « less
  4. We propose an approach for adversarial attacks on dense prediction models (such as object detectors and segmentation). It is well known that the attacks generated by a single surrogate model do not transfer to arbitrary (blackbox) victim models. Furthermore, targeted attacks are often more challenging than the untargeted attacks. In this paper, we show that a carefully designed ensemble can create effective attacks for a number of victim models. In particular, we show that normalization of the weights for individual models plays a critical role in the success of the attacks. We then demonstrate that by adjusting the weights of the ensemble according to the victim model can further improve the performance of the attacks. We performed a number of experiments for object detectors and segmentation to highlight the significance of the our proposed methods. Our proposed ensemble-based method outperforms existing blackbox attack methods for object detection and segmentation. Finally we show that our proposed method can also generate a single perturbation that can fool multiple blackbox detection and segmentation models simultaneously. 
    more » « less
  5. null (Ed.)
    Industrial Control Systems (ICS) are used to control physical processes in critical infrastructure. These systems are used in a wide variety of operations such as water treatment, power generation and distribution, and manufacturing. While the safety and security of these systems are of serious concern, recent reports have shown an increase in targeted attacks aimed at manipulating physical processes to cause catastrophic consequences. This trend emphasizes the need for algorithms and tools that provide resilient and smart attack detection mechanisms to protect ICS. In this paper, we propose an anomaly detection framework for ICS based on a deep neural network. The proposed methodology uses dilated convolution and long short-term memory (LSTM) layers to learn temporal as well as long term dependencies within sensor and actuator data in an ICS. The sensor/actuator data are passed through a unique feature engineering pipeline where wavelet transformation is applied to the sensor signals to extract features that are fed into the model. Additionally, this paper explores four variations of supervised deep learning models, as well as an unsupervised support vector machine (SVM) model for this problem. The proposed framework is validated on Secure Water Treatment testbed results. This framework detects more attacks in a shorter period of time than previously published methods. 
    more » « less