skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Pan, Xiaoqing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Uric acid (UA) is a vital biomarker for the diagnosis and management of various health conditions, including cardiovascular diseases, gout, kidney disorders, metabolic syndrome, and wound healing. Despite significant advances in wearable sensor technology, challenges persist in developing wearable sensors that are capable of maintaining high sensitivity, selectivity, and stability. In this study, we present an epidermal sensing platform enhanced with single-atom materials (SAMs) designed for flexible and orthogonal electrochemical detection of UA. We designed and synthesized an SAM with Fe-N5active sites to boost the electrochemical sensing signals, integrating it with laser-engraved graphene (LEG) to fabricate a wearable SAM-based UA patch sensor. This design provides superior UA detection performance compared to sensors based on conventional nanomaterials. In addition, we enhanced the detection accuracy and range by using an orthogonal approach that combines direct oxidation through differential pulse voltammetry (DPV) along with parallel biocatalytic amperometric detection. The resulting SAM-based UA orthogonal sensor patch demonstrated exceptional performance in wearable applications through tests measuring sweat UA levels in subjects before and after consuming a purine-rich diet.

    Graphical Abstract

     
    more » « less
  2. Abstract

    Diffusion involving atom transport from one location to another governs many important processes and behaviors such as precipitation and phase nucleation. The inherent chemical complexity in compositionally complex materials poses challenges for modeling atomic diffusion and the resulting formation of chemically ordered structures. Here, we introduce a neural network kinetics (NNK) scheme that predicts and simulates diffusion-induced chemical and structural evolution in complex concentrated chemical environments. The framework is grounded on efficient on-lattice structure and chemistry representation combined with artificial neural networks, enabling precise prediction of all path-dependent migration barriers and individual atom jumps. To demonstrate the method, we study the temperature-dependent local chemical ordering in a refractory NbMoTa alloy and reveal a critical temperature at which the B2 order reaches a maximum. The atomic jump randomness map exhibits the highest diffusion heterogeneity (multiplicity) in the vicinity of this characteristic temperature, which is closely related to chemical ordering and B2 structure formation. The scalable NNK framework provides a promising new avenue to exploring diffusion-related properties in the vast compositional space within which extraordinary properties are hidden.

     
    more » « less
  3. Free, publicly-accessible full text available April 19, 2025
  4. Confining materials to two-dimensional forms changes the behaviour of the electrons and enables the creation of new devices. However, most materials are challenging to produce as uniform, thin crystals. Here we present a synthesis approach where thin crystals are grown in a nanoscale mould defined by atomically flat van der Waals (vdW) materials. By heating and compressing bismuth in a vdW mould made of hexagonal boron nitride, we grow ultraflat bismuth crystals less than 10 nm thick. Due to quantum confinement, the bismuth bulk states are gapped, isolating intrinsic Rashba surface states for transport studies. The vdW-moulded bismuth shows exceptional electronic transport, enabling the observation of Shubnikov–de Haas quantum oscillations originating from the (111) surface state Landau levels. By measuring the gate-dependent magnetoresistance, we observe multi-carrier quantum oscillations and Landau level splitting, with features originating from both the top and bottom surfaces. Our vdW mould growth technique establishes a platform for electronic studies and control of bismuth’s Rashba surface states and topological boundary modes1,2,3. Beyond bismuth, the vdW-moulding approach provides a low-cost way to synthesize ultrathin crystals and directly integrate them into a vdW heterostructure. 
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  5. Abstract

    Single-atom catalysts (SACs) offer efficient metal utilization and distinct reactivity compared to supported metal nanoparticles. Structure-function relationships for SACs often assume that active sites have uniform coordination environments at particular binding sites on support surfaces. Here, we investigate the distribution of coordination environments of Pt SAs dispersed on shape-controlled anatase TiO2supports specifically exposing (001) and (101) surfaces. Pt SAs on (101) are found on the surface, consistent with existing structural models, whereas those on (001) are beneath the surface after calcination. Pt SAs under (001) surfaces exhibit lower reactivity for CO oxidation than those on (101) surfaces due to their limited accessibility to gas phase species. Pt SAs deposited on commercial-TiO2are found both at the surface and in the bulk, posing challenges to structure-function relationship development. This study highlights heterogeneity in SA coordination environments on oxide supports, emphasizing a previously overlooked consideration in the design of SACs.

     
    more » « less
  6. Abstract

    High entropy oxides (HEOs), based on the incorporation of multiple‐principal cations into the crystal lattice, offer the possibility to explore previously inaccessible oxide compositions and unconventional properties. Here it is demonstrated that despite the chemical complexity of HEOs external stimuli, such as epitaxial strain, can selectively stabilize certain magneto‐electronic states. Epitaxial (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4‐HEO thin films are grown in three different strain states: tensile, compressive, and relaxed. A unique coexistence of rocksalt and spinel‐HEO phases, which are fully coherent with no detectable chemical segregation, is revealed by transmission electron microscopy. This dual‐phase coexistence appears as a universal phenomenon in (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4epitaxial films. Prominent changes in the magnetic anisotropy and domain structure highlight the strain‐induced bidirectional control of magnetic properties in HEOs. When the films are relaxed, their magnetization behavior is isotropic, similar to that of bulk materials. However, under tensile strain, the hardness of the out‐of‐plane (OOP) axis increases significantly. On the other hand, compressive straining results in an easy OOP magnetization and a maze‐like magnetic domain structure, indicating the perpendicular magnetic anisotropy. Generally, this study emphasizes the adaptability of the high entropy design strategy, which, when combined with coherent strain engineering, opens additional prospects for fine‐tuning properties in oxides.

     
    more » « less
  7. In ferroelectric heterostructures, the interaction between intrinsic polarization and the electric field generates a rich set of localized electrical properties. The local electric field is determined by several connected factors, including the charge distribution of individual unit cells, the interfacial electromechanical boundary conditions, and chemical composition of the interfaces. However, especially in ferroelectric perovskites, a complete description of the local electric field across micro-, nano-, and atomic-length scales is missing. Here, by applying four-dimensional scanning transmission electron microscopy (4D STEM) with multiple probe sizes matching the size of structural features, we directly image the electric field of polarization vortices in (PbTiO3)16/(SrTiO3)16 superlattices and reveal different electric field configurations corresponding to the atomic scale electronic ordering and the nanoscale boundary conditions. The separability of two different fields probed by 4D STEM offers the possibility to reveal how each contributes to the electronic properties of the film.

     
    more » « less