Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The 5G user plane function (UPF) is a critical inter-connection point between the data network and cellular network infrastructure. It governs the packet processing performance of the 5G core network. UPFs also need to be flexible to support several key control plane operations. Existing UPFs typically run on general-purpose CPUs, but have limited performance because of the overheads of host-based forwarding. We design Synergy, a novel 5G UPF running on SmartNICs that provides high throughput and low latency. It also supports monitoring functionality to gather critical data on user sessions for the prediction and optimization of handovers during user mobility. The SmartNIC UPF efficiently buffers data packets during handover and paging events by using a two-level flow-state access mechanism. This enables maintaining flow-state for a very large number of flows, thus providing very low latency for control and data planes and high throughput packet forwarding. Mobility prediction can reduce the handover delay by pre-populating state in the UPF and other core NFs. Synergy performs handover predictions based on an existing recurrent neural network model. Synergy's mobility predictor helps us achieve 2.32× lower average handover latency. Buffering in the SmartNIC, rather than the host, during paging and handover events reduces packet loss rate by at least 2.04×. Compared to previous approaches to building programmable switch-based UPFs, Synergy speeds up control plane operations such as handovers because of the low P4-programming latency leveraging tight coupling between SmartNIC and host.more » « less
-
With the commercialization and deployment of 5G, efforts are beginning to explore the design of the next generation of cellular networks, called 6G. New and constantly evolving use cases continue to place performance demands, especially for low latency communications, as these are still challenges for the 3GPP-specified 5G design, and will have to be met by the 6G design. Therefore, it is helpful to re-examine several aspects of the current cellular network’s design and implementation.Based on our understanding of the 5G cellular network specifications, we explore different implementation options for a dis-aggregated 5G core and their performance implications. To improve the data plane performance, we consider advanced packet classification mechanisms to support fast packet processing in the User Plane Function (UPF), to improve the poor performance and scalability of the current design based on linked lists. Importantly, we implement the UPF function on a SmartNIC for forwarding and tunneling. The SmartNIC provides the fastpath for device traffic, while more complex functions of buffering and processing flows that suffer a miss on the SmartNIC P4 tables are processed by the host-based UPF. Compared to an efficient DPDK-based host UPF, the SmartNIC UPF increases the throughput for 64 Byte packets by almost 2×. Furthermore, we lower the packet forwarding latency by 3.75× by using the SmartNIC. In addition, we propose a novel context-level QoS mechanism that dynamically updates the Packet Detection Rule priority and resource allocation of a flow based on the user context. By combining our innovations, we can achieve low latency and high throughput that will help us evolve to the next generation 6G cellular networks.more » « less
-
Despite advances in network security, attacks targeting mission critical systems and applications remain a significant problem for network and datacenter providers. Existing telemetry platforms detect volumetric attacks at terabit scales using approximation techniques and coarse grain analysis. However, the prevalence of low and slow attacks that require very little bandwidth, makes flow-state tracking critical to overall attack mitigation. Traffic queries deployed on network switches are often limited by hardware constraints, preventing them from carrying out flow tracking features required to detect stealthy attacks. Such attacks can go undetected in the midst of high traffic volumes. We design SmartWatch, a novel flow state tracking and flow logging system at line rate, using SmartNICs to optimize performance and simultaneously detect a number of stealthy attacks. SmartWatch leverages advances in switch based network telemetry platforms to process the bulk of the traffic and only forward suspicious traffic subsets to the SmartNIC. The programmable network switches perform coarse-grained traffic analysis while the SmartNIC conducts the finer-grained analysis which involves additional processing of the packet as a 'bump-in-the-wire'. A control loop between the SmartNIC and programmable switch tunes the queries performed in the switch to direct the most appropriate traffic subset to the SmartNIC. SmartWatch's cooperative monitoring approach yields 2.39 times better detection rate compared to existing platforms deployed on programmable switches. SmartWatch can detect covert timing channels and perform website fingerprinting more efficiently compared to standalone programmable switch solutions, relieving switch memory and control-plane processor resources. Compared to host-based approaches, SmartWatch can reduce the packet processing latency by 72.32%.more » « less
-
Software Defined Networking (SDN) and Network Function Virtualization (NFV) are transforming Data Center (DC), Telecom, and enterprise networking. The programmability offered by P4 enables SDN to be more protocol-independent and flexible. Data Centers are increasingly adopting SmartNICs (sNICs) to accelerate packet processing that can be leveraged to support packet processing pipelines and custom Network Functions (NFs). However, there are several challenges in integrating and deploying P4 based SDN control as well as host and sNIC-based programmable NFs. These include configuration and management of the data plane components (Host and sNIC P4 switches) for the SDN control plane and effective utilization of data plane resources. P4NFV addresses these concerns and provides a unified P4 switch abstraction framework to simplify the SDN control plane, reducing management complexities, and leveraging a host-local SDN Agent to improve the overall resource utilization. The SDN agent considers the network-wide, host, and sNIC specific capabilities and constraints. Based on workload and traffic characteristics, P4NFV determines the partitioning of the P4 tables and optimal placement of NFs (P4 actions) to minimize the overall delay and maximize resource utilization. P4NFV uses Mixed Integer Linear Programming (MILP) based optimization formulation and achieves up to 2. 5X increase in system capacity while minimizing the delay experienced by flows. P4NFV considers the number of packet exchanges, flow size, and state dependency to minimize the delay imposed by data transmission over PCI Express interface.more » « less