Cellular network control procedures (e.g., mobility, idle-active transition to conserve energy) directly influence data plane behavior, impacting user-experienced delay. Recognizing this control-data plane interdependence, L25GC re-architects the 5G Core (5GC) network, and its processing, to reduce latency of control plane operations and their impact on the data plane. Exploiting shared memory, L25GC eliminates message serialization and HTTP processing overheads, while being 3GPP-standards compliant. We improve data plane processing by factoring the functions to avoid control-data plane interference, and using scalable, flow-level packet classifiers for forwarding-rule lookups. Utilizing buffers at the 5GC, L25GC implements paging, and an intelligent handover scheme avoiding 3GPP's hairpin routing, and data loss caused by limited buffering at 5G base stations, reduces delay and unnecessary message processing. L25GC's integrated failure resiliency transparently recovers from failures of 5GC software network functions and hardware much faster than 3GPP's reattach recovery procedure. L25GC is built based on free5GC, an open-source kernel-based 5GC implementation. L25GC reduces event completion time by ~50% for several control plane events and improves data packet latency (due to improved control plane communication) by ~2×, during paging and handover events, compared to free5GC. L25GC's design is general, although current implementation supports a limited number of user sessions. 
                        more » 
                        « less   
                    
                            
                            Synergy: A SmartNIC Accelerated 5G Dataplane and Monitor for Mobility Prediction
                        
                    
    
            The 5G user plane function (UPF) is a critical inter-connection point between the data network and cellular network infrastructure. It governs the packet processing performance of the 5G core network. UPFs also need to be flexible to support several key control plane operations. Existing UPFs typically run on general-purpose CPUs, but have limited performance because of the overheads of host-based forwarding. We design Synergy, a novel 5G UPF running on SmartNICs that provides high throughput and low latency. It also supports monitoring functionality to gather critical data on user sessions for the prediction and optimization of handovers during user mobility. The SmartNIC UPF efficiently buffers data packets during handover and paging events by using a two-level flow-state access mechanism. This enables maintaining flow-state for a very large number of flows, thus providing very low latency for control and data planes and high throughput packet forwarding. Mobility prediction can reduce the handover delay by pre-populating state in the UPF and other core NFs. Synergy performs handover predictions based on an existing recurrent neural network model. Synergy's mobility predictor helps us achieve 2.32× lower average handover latency. Buffering in the SmartNIC, rather than the host, during paging and handover events reduces packet loss rate by at least 2.04×. Compared to previous approaches to building programmable switch-based UPFs, Synergy speeds up control plane operations such as handovers because of the low P4-programming latency leveraging tight coupling between SmartNIC and host. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10426967
- Date Published:
- Journal Name:
- 2022 IEEE 30th International Conference on Network Protocols (ICNP)
- Page Range / eLocation ID:
- 1 to 12
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            With the commercialization and deployment of 5G, efforts are beginning to explore the design of the next generation of cellular networks, called 6G. New and constantly evolving use cases continue to place performance demands, especially for low latency communications, as these are still challenges for the 3GPP-specified 5G design, and will have to be met by the 6G design. Therefore, it is helpful to re-examine several aspects of the current cellular network’s design and implementation.Based on our understanding of the 5G cellular network specifications, we explore different implementation options for a dis-aggregated 5G core and their performance implications. To improve the data plane performance, we consider advanced packet classification mechanisms to support fast packet processing in the User Plane Function (UPF), to improve the poor performance and scalability of the current design based on linked lists. Importantly, we implement the UPF function on a SmartNIC for forwarding and tunneling. The SmartNIC provides the fastpath for device traffic, while more complex functions of buffering and processing flows that suffer a miss on the SmartNIC P4 tables are processed by the host-based UPF. Compared to an efficient DPDK-based host UPF, the SmartNIC UPF increases the throughput for 64 Byte packets by almost 2×. Furthermore, we lower the packet forwarding latency by 3.75× by using the SmartNIC. In addition, we propose a novel context-level QoS mechanism that dynamically updates the Packet Detection Rule priority and resource allocation of a flow based on the user context. By combining our innovations, we can achieve low latency and high throughput that will help us evolve to the next generation 6G cellular networks.more » « less
- 
            While 5G offers fast access networks and a high-performance data plane, the control plane in 5G core (5GC) still presents challenges due to inefficiencies in handling control plane operations (including session establishment, handovers and idle-to-active state-transitions) of 5G User Equipment (UE). The Service-based Interface (SBI) used for communication between 5G control plane functions introduces substantial overheads that impact latency. Typical 5GCs are supported in the cloud on containers, to support the disaggregated Control and User Plane Separation (CUPS) framework of 3GPP. L25GC is a state-of-the-art 5G control plane design utilizing shared memory processing to reduce the control plane latency. However, L25GC has limitations in supporting multiple user sessions and has programming language incompatibilities with 5GC implementations, e.g., free5GC, using modern languages such as GoLang. To address these challenges, we develop L25GC+, a significant enhancement to L25GC. L25GC+ re-designs the shared-memory-based networking stack to support synchronous I/O between control plane functions. L25GC+ distinguishes different user sessions and maintains strict 3GPP compliance. L25GC+ also offers seamless integration with existing 5GC microservice implementations through equivalent SBI APIs, reducing code refactoring and porting efforts. By leveraging shared memory I/O and overcoming L25GC’s limitations, L25GC+ provides an improved solution to optimize the 5G control plane, enhancing latency, scalability, and overall user experience. We demonstrate the improved performance of L25GC+ on a 5G testbed with commercial basestations and multiple UEs.more » « less
- 
            Despite advances in network security, attacks targeting mission critical systems and applications remain a significant problem for network and datacenter providers. Existing telemetry platforms detect volumetric attacks at terabit scales using approximation techniques and coarse grain analysis. However, the prevalence of low and slow attacks that require very little bandwidth, makes flow-state tracking critical to overall attack mitigation. Traffic queries deployed on network switches are often limited by hardware constraints, preventing them from carrying out flow tracking features required to detect stealthy attacks. Such attacks can go undetected in the midst of high traffic volumes. We design SmartWatch, a novel flow state tracking and flow logging system at line rate, using SmartNICs to optimize performance and simultaneously detect a number of stealthy attacks. SmartWatch leverages advances in switch based network telemetry platforms to process the bulk of the traffic and only forward suspicious traffic subsets to the SmartNIC. The programmable network switches perform coarse-grained traffic analysis while the SmartNIC conducts the finer-grained analysis which involves additional processing of the packet as a 'bump-in-the-wire'. A control loop between the SmartNIC and programmable switch tunes the queries performed in the switch to direct the most appropriate traffic subset to the SmartNIC. SmartWatch's cooperative monitoring approach yields 2.39 times better detection rate compared to existing platforms deployed on programmable switches. SmartWatch can detect covert timing channels and perform website fingerprinting more efficiently compared to standalone programmable switch solutions, relieving switch memory and control-plane processor resources. Compared to host-based approaches, SmartWatch can reduce the packet processing latency by 72.32%.more » « less
- 
            IoT systems require a wireless infrastructure that supports 5G devices, including handovers between heterogeneous and/or small cell radio access networks. These networks are subject to increased radio link failures and loss of IoT network function. 3GPP new radio (NR) applications include multihoming, i.e., simultaneously connecting devices, and handover, i.e., changing the point of access to the network. This work leverages the open radio access network (O-RAN) alliance, which specifies a new open architecture with intelligent controllers, to improve handover management. A new feedback-based time-to-trigger (TTT) handover mechanism is introduced. Improved throughput and reduced radio link failures over other techniques were achieved.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    