skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pandey, K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Plastic strain-induced phase transformations (PTs) and chemical reactions under high pressure are broadly spread in modern technologies, friction and wear, geophysics, and astrogeology. However, because of very heterogeneous fields of plastic strain Ep and stress σ tensors and volume fraction c of phases in a sample compressed in a diamond anvil cell (DAC) and impossibility of measurements of σ and Ep, there are no strict kinetic equations for them. Here, we develop a kinetic model, finite element method (FEM) approach, and combined FEM-experimental approaches to determine all fields in strongly plastically pre deformed Zr compressed in DAC, and specific kinetic equation for α-ω PT consistent with experimental data for the entire sample. Since all fields in the sample are very heterogeneous, data are obtained for numerous complex 7D paths in the space of 3 components of the plastic strain tensor and 4 components of the stress tensor. Kinetic equation depends on accumulated plastic strain (instead of time) and pressure and is independent of plastic strain and deviatoric stress tensors, i.e., it can be applied for various above processes. Our results initiate kinetic studies of strain-induced PTs and provide efforts toward more comprehensive understanding of material behavior in extreme conditions. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract In this study, we present ionospheric observations of field‐aligned currents from AMPERE and the ESA Swarm A satellite, in conjunction with high‐resolution thermospheric density measurements from accelerometers on board Swarm C and GRACE‐FO, for the third and 4 February 2022 geomagnetic storms that led to the loss of 38 Starlink internet satellites. We study the global storm time response of the thermospheric density enhancements, including their decay and latitudinal distribution. We find that the thermospheric density enhances globally in response to high‐latitude energy input from the magnetosphere‐solar wind system and takes at least a full day to recover to pre‐storm density levels. We also find that the greatest density perturbations occur at polar latitudes consistent with the magnetosphere‐ionosphere dayside cusp, and that there appeared to be a saturation of the thermospheric density during the geomagnetic storm on the fourth. Our results highlight the critical importance of high‐latitude ionospheric observations when diagnosing potentially hazardous conditions for low‐Earth‐orbit satellites. 
    more » « less
  3. Abstract Various phenomena (phase transformations (PTs), chemical reactions, microstructure evolution, strength, and friction) under high pressures in diamond-anvil cell are strongly affected by fields of stress and plastic strain tensors. However, they could not be measured. Here, we suggest coupled experimental-analytical-computational approaches utilizing synchrotron X-ray diffraction, to solve an inverse problem and find fields of all components of stress and plastic strain tensors and friction rules before, during, and after α-ω PT in strongly plastically predeformed Zr. Results are in good correspondence with each other and experiments. Due to advanced characterization, the minimum pressure for the strain-induced α-ω PT is changed from 1.36 to 2.7 GPa. It is independent of the plastic strain before PT and compression-shear path. The theoretically predicted plastic strain-controlled kinetic equation is verified and quantified. Obtained results open opportunities for developing quantitative high-pressure/stress science, including mechanochemistry, synthesis of new nanostructured materials, geophysics, astrogeology, and tribology. 
    more » « less
  4. Abstract The total energy transfer from the solar wind to the magnetosphere is governed by the reconnection rate at the magnetosphere edges as the Z‐component of interplanetary magnetic field (IMFBz) turns southward. The geomagnetic storm on 21–22 January 2005 is considered to be anomalous as the SYM‐H index that signifies the strength of ring current, decreases and had a sustained trough value of −101 nT lasting more than 6 hr under northward IMFBzconditions. In this work, the standard WINDMI model is utilized to estimate the growth and decay of magnetospheric currents by using several solar wind‐magnetosphere coupling functions. However, it is found that the WINDMI model driven by any of these coupling functions is not fully able to explain the decrease of SYM‐H under northward IMFBz. A dense plasma sheet along with signatures of a highly stretched magnetosphere was observed during this storm. The SYM‐H variations during the entire duration of the storm were only reproduced after modifying the WINDMI model to account for the effects of the dense plasma sheet. The limitations of directly driven models relying purely on the solar wind parameters and not accounting for the state of the magnetosphere are highlighted by this work. 
    more » « less
  5. Pressure-induced phase transformations (PTs) between numerous phases of Si, the most important electronic material, have been studied for decades. This is not the case for plastic strain-induced PTs. Here, we revealed in-situ various unexpected plastic strain-induced PT phenomena. Thus, for 100 nm Si, strain-induced PT Si-I to Si-II (and Si-I to Si-III) initiates at 0.4 GPa (0.6 GPa) versus 16.2 GPa (∞, since it does not occur) under hydrostatic conditions; for 30 nm Si, it is 6.1 GPa versus ∞. The predicted theoretical correlation between the direct and inverse Hall-Petch effect of the grain size on the yield strength and the minimum pressure for strain-induced PT is confirmed for the appearance of Si-II. Retaining Si-II at ambient pressure and obtaining reverse Si-II to Si-I PT are achieved, demonstrating the possibilities of manipulating different synthetic paths. 
    more » « less
  6. The effect of initial microstructure and its evolution across the α→ω phase transformation in commercially pure Zr under hydrostatic compression has been studied using in situ x-ray diffraction measurements. Two samples were studied: one is plastically pre-deformed Zr with saturated hardness and the other is annealed. Phase transformation α→ω initiates at lower pressure for pre-deformed sample, suggesting pre-straining promotes nucleation by producing more defects with stronger stress concentrators. With transformation progress, the promoting effect on nucleation reduces while that on growth is suppressed by producing more obstacles for interface propagation. The crystal domain size reduces and microstrain and dislocation density increase during loading for both α and ω phases in their single-phase regions. For α phase, domain sizes are much smaller for prestrained Zr, while microstrain and dislocation densities are much higher. On the other hand, they do not differ much in ω Zr for both prestrained and annealed samples, implying that microstructure is not inherited during phase transformation. The significant effect of pressure on the microstructural parameters (domain size, microstrain, and dislocation density) demonstrates that their postmortem evaluation does not represent the true conditions during loading. A simple model for the initiation of the phase transformation involving microstrain is suggested, and a possible model for the growth is outlined. The obtained results suggest an extended experimental basis is required for better predictive models for the pressure-induced and combined pressure- and strain-induced phase transformations. 
    more » « less
  7. Study of the plastic flow and strain-induced phase transformations (PTs) under high pressure with diamond anvils is important for material and geophysics. We introduce rough diamond anvils and apply them to Zr, which drastically change the plastic flow, microstructure, and PTs. Multiple steady microstructures independent of pressure, plastic strain, and strain path are reached. Maximum friction equal to the yield strength in shear is achieved. This allows determination of the pressure-dependence of the yield strength and proves that ω-Zr behaves like perfectly plastic, isotropic, and strain path-independent immediately after PT. Record minimum pressure for α-ω PT was identified. Kinetics of strain-induced PT depends on plastic strain and time. Crystallite size and dislocation density in ω-Zr during PT depend solely on the volume fraction of ω-Zr. 
    more » « less
  8. Observation of intrinsic quantum transport properties of two-dimensional (2D) topological semimetals can be challenging due to suppression of high mobility caused by extrinsic factors introduced during fabrication. We demonstrate current annealing as a method to substantially improve electronic transport properties of 2D topological semimetal flakes. Contact resistance and resistivity were improved by factors up to 2×106 and 2×104, respectively, in devices based on exfoliated flakes of two topological semimetals, ZrSiSe and BaMnSb2. Using this method, carrier mobility in ZrSiSe was improved by a factor of 3800, resulting in observation of record-high mobility for exfoliated ZrSiSe. Quantum oscillations in annealed ZrSiSe appeared at magnetic fields as low as 5 T, and magnetoresistance increased by a factor of 104. We argue that a thermal process underlies this improvement. Finally, Raman spectroscopy and analysis of quantum oscillations in ZrSiSe indicate that the phonon modes and Fermi surface area are unchanged by current annealing. 
    more » « less
  9. Abstract The path of totality of the 8 April 2024 solar eclipse traversed the fields‐of‐view of four US SuperDARN radars. This rare scenario provided an excellent opportunity to monitor the large‐scale ionospheric response to the eclipse. In this study, we present observations made by the Blackstone (BKS) SuperDARN radar and a Digisonde during the eclipse. Two striking effects were observed by the BKS radar: (a) the Doppler velocities associated with ground scatter coalesced into a pattern clearly organized by the line of totality, with a reversal in sign across this line, and, (b) a delay of 45 min between time of maximum obscuration and maximum effect on the skip distance. The skip distance estimated using a SAMI3 simulation of the eclipse did not however capture the asymmetric time‐delay. These observations suggest that the neutral atmosphere plays an important role in controlling ionospheric plasma dynamics, which were missing in SAMI3 simulations. 
    more » « less
  10. The first in situ quantitative synchrotron X-ray diffraction (XRD) study of plastic strain-induced phase transformation (PT) has been performed on $$\alpha-\omega$$ PT in ultra-pure, strongly plastically predeformed Zr as an example, under different compression-shear pathways in rotational diamond anvil cell (RDAC). Radial distributions of pressure in each phase and in the mixture, and concentration of $$\omega$$-Zr, all averaged over the sample thickness, as well as thickness profile were measured. The minimum pressure for the strain-induced $$\alpha-\omega$$ PT, $$p^d_{\varepsilon}$$=1.2 GPa, is smaller than under hydrostatic loading by a factor of 4.5 and smaller than the phase equilibrium pressure by a factor of 3; it is independent of the compression-shear straining path. The theoretically predicted plastic strain-controlled kinetic equation was verified and quantified; it is independent of the pressure-plastic strain loading path and plastic deformation at pressures below $$p^d_{\varepsilon}$$. Thus, strain-induced PTs under compression in DAC and torsion in RDAC do not fundamentally differ. The yield strength of both phases is estimated using hardness and x-ray peak broadening; the yield strength in shear is not reached by the contact friction stress and cannot be evaluated using the pressure gradient. Obtained results open a new opportunity for quantitative study of strain-induced PTs and reactions with applications to material synthesis and processing, mechanochemistry, and geophysics. 
    more » « less