skip to main content

Search for: All records

Creators/Authors contains: "Pandey, Santosh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Soybeans are an important crop for global food security. Every year, soybean yields are reduced by numerous soybean diseases, particularly the soybean cyst nematode (SCN). It is difficult to visually identify the presence of SCN in the field, let alone its population densities or numbers, as there are no obvious aboveground disease symptoms. The only definitive way to assess SCN population densities is to directly extract the SCN cysts from soil and then extract the eggs from cysts and count them. Extraction is typically conducted in commercial soil analysis laboratories and university plant diagnostic clinics and involves repeated steps of sieving, washing, collecting, grinding, and cleaning. Here we present a robotic instrument to reproduce and automate the functions of the conventional methods to extract nematode cysts from soil and subsequently extract eggs from the recovered nematode cysts. We incorporated mechanisms to actuate the stage system, manipulate positions of individual sieves using the gripper, recover cysts and cyst-sized objects from soil suspended in water, and grind the cysts to release their eggs. All system functions are controlled and operated by a touchscreen interface software. The performance of the robotic instrument is evaluated using soil samples infested with SCN from two farms at different locations and results were comparable to the conventional technique. Our new technology brings the benefits of automation to SCN soil diagnostics, a step towards long-term integrated pest management of this serious soybean pest. 
    more » « less
  2. Population-scale and rapid testing for SARS-CoV-2 continues to be a priority for several parts of the world. We revisit the in vitro technology platforms for COVID-19 testing and diagnostics—molecular tests and rapid antigen tests, serology or antibody tests, and tests for the management of COVID-19 patients. Within each category of tests, we review the commercialized testing platforms, their analyzing systems, specimen collection protocols, testing methodologies, supply chain logistics, and related attributes. Our discussion is essentially focused on test products that have been granted emergency use authorization by the FDA to detect and diagnose COVID-19 infections. Different strategies for scaled-up and faster screening are covered here, such as pooled testing, screening programs, and surveillance testing. The near-term challenges lie in detecting subtle infectivity profiles, mapping the transmission dynamics of new variants, lowering the cost for testing, training a large healthcare workforce, and providing test kits for the masses. Through this review, we try to understand the feasibility of universal access to COVID-19 testing and diagnostics in the near future while being cognizant of the implicit tradeoffs during the development and distribution cycles of new testing platforms. 
    more » « less
  3. Real-time monitoring of the gastrointestinal tract in a safe and comfortable manner is valuable for the diagnosis and therapy of many diseases. Within this realm, our review captures the trends in ingestible capsule systems with a focus on hardware and software technologies used for capsule endoscopy and remote patient monitoring. We introduce the structure and functions of the gastrointestinal tract, and the FDA guidelines for ingestible wireless telemetric medical devices. We survey the advanced features incorporated in ingestible capsule systems, such as microrobotics, closed-loop feedback, physiological sensing, nerve stimulation, sampling and delivery, panoramic imaging with adaptive frame rates, and rapid reading software. Examples of experimental and commercialized capsule systems are presented with descriptions of their sensors, devices, and circuits for gastrointestinal health monitoring. We also show the recent research in biocompatible materials and batteries, edible electronics, and alternative energy sources for ingestible capsule systems. The results from clinical studies are discussed for the assessment of key performance indicators related to the safety and effectiveness of ingestible capsule procedures. Lastly, the present challenges and outlook are summarized with respect to the risks to health, clinical testing and approval process, and technology adoption by patients and clinicians. 
    more » « less
  4. New combinations of existing antibiotics are being investigated to combat bacterial resilience. This requires detection technologies with reasonable cost, accuracy, resolution, and throughput. Here, we present a multi -drug screening platform for bacterial cultures by combining droplet microfluidics, search algorithms, and imaging with a wide field of view. We remotely alter the chemical microenvironment around cells and test 12 combinations of resistant cell types and chemicals. Fluorescence intensity readouts allow us to infer bacterial resistance to specific antibiotics within 8 hours. The platform has potential to detect and identify parameters of bacterial resilience in cell cultures, biofilms, and microbial aggregates. 
    more » « less
  5. Precision swine production can benefit from autonomous, noninvasive, and affordable devices that conduct frequent checks on the well-being status of pigs. Here, we present a remote monitoring tool for the objective measurement of some behavioral indicators that may help in assessing the health and welfare status—namely, posture, gait, vocalization, and external temperature. The multiparameter electronic sensor board is characterized by laboratory measurements and by animal tests. Relevant behavioral health indicators are discussed for implementing machine learning algorithms and decision support tools to detect animal lameness, lethargy, pain, injury, and distress. The roadmap for technology adoption is also discussed, along with challenges and the path forward. The presented technology can potentially lead to efficient management of farm animals, targeted focus on sick animals, medical cost savings, and less use of antibiotics. 
    more » « less
  6. null (Ed.)
  7. Zhang, Jie (Ed.)