- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Pandya, Sneh (3)
-
Blazek, Jonathan (1)
-
Carrasco Kind, Matias (1)
-
Halverson, James (1)
-
Kindratenko, Volodymyr (1)
-
Lin, Joshua Yao-Yu (1)
-
Liu, Xin (1)
-
Pratap, Devanshi (1)
-
Van_Alfen, Nicholas (1)
-
Walters, Robin (1)
-
Yang, Yuanyuan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The intrinsic alignments (IA) of galaxies, a key contaminant in weak lensing analyses, arise from correlations in galaxy shapes driven by tidal interactions and galaxy formation processes. Accurate IA modeling is essential for robust cosmological inference, but current approaches rely on perturbative methods that break down on nonlinear scales or on expensive simulations. We introduce IAEmu, a neural network-based emulator that predicts the galaxy position-position ( ), position-orientation ( ), and orientation-orientation ( ) correlation functions and their uncertainties using mock catalogs based on the halo occupation distribution (HOD) framework. Compared to simulations, IAEmu achieves ~3% average error for and ~5% for , while capturing the stochasticity of without overfitting. The emulator provides both aleatoric and epistemic uncertainties, helping identify regions where predictions may be less reliable. We also demonstrate generalization to non-HOD alignment signals by fitting to IllustrisTNG hydrodynamical simulation data. As a fully differentiable neural network, IAEmu enables $ $ speed-ups in mapping HOD parameters to correlation functions on GPUs, compared to CPU-based simulations. This acceleration facilitates inverse modeling via gradient-based sampling, making IAEmu a powerful surrogate model for galaxy bias and IA studies with direct applications to Stage IV weak lensing surveys.more » « lessFree, publicly-accessible full text available December 2, 2026
-
Halverson, James; Pandya, Sneh (, Physical Review D)
-
Lin, Joshua Yao-Yu; Pandya, Sneh; Pratap, Devanshi; Liu, Xin; Carrasco Kind, Matias; Kindratenko, Volodymyr (, Monthly Notices of the Royal Astronomical Society)ABSTRACT Supermassive black holes (SMBHs) are commonly found at the centres of most massive galaxies. Measuring SMBH mass is crucial for understanding the origin and evolution of SMBHs. Traditional approaches, on the other hand, necessitate the collection of spectroscopic data, which is costly. We present an algorithm that weighs SMBHs using quasar light time series information, including colours, multiband magnitudes, and the variability of the light curves, circumventing the need for expensive spectra. We train, validate, and test neural networks that directly learn from the Sloan Digital Sky Survey (SDSS) Stripe 82 light curves for a sample of 38 939 spectroscopically confirmed quasars to map out the non-linear encoding between SMBH mass and multiband optical light curves. We find a 1σ scatter of 0.37 dex between the predicted SMBH mass and the fiducial virial mass estimate based on SDSS single-epoch spectra, which is comparable to the systematic uncertainty in the virial mass estimate. Our results have direct implications for more efficient applications with future observations from the Vera C. Rubin Observatory. Our code, AGNet, is publicly available at https://github.com/snehjp2/AGNet.more » « less
An official website of the United States government
