skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AGNet: weighing black holes with deep learning
ABSTRACT Supermassive black holes (SMBHs) are commonly found at the centres of most massive galaxies. Measuring SMBH mass is crucial for understanding the origin and evolution of SMBHs. Traditional approaches, on the other hand, necessitate the collection of spectroscopic data, which is costly. We present an algorithm that weighs SMBHs using quasar light time series information, including colours, multiband magnitudes, and the variability of the light curves, circumventing the need for expensive spectra. We train, validate, and test neural networks that directly learn from the Sloan Digital Sky Survey (SDSS) Stripe 82 light curves for a sample of 38 939 spectroscopically confirmed quasars to map out the non-linear encoding between SMBH mass and multiband optical light curves. We find a 1σ scatter of 0.37 dex between the predicted SMBH mass and the fiducial virial mass estimate based on SDSS single-epoch spectra, which is comparable to the systematic uncertainty in the virial mass estimate. Our results have direct implications for more efficient applications with future observations from the Vera C. Rubin Observatory. Our code, AGNet, is publicly available at https://github.com/snehjp2/AGNet.  more » « less
Award ID(s):
2108162
PAR ID:
10384858
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
518
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 4921-4929
Size(s):
p. 4921-4929
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present an analysis of NuSTAR X-ray observations of three active galactic nuclei (AGN) that were identified as candidate subparsec binary supermassive black hole (SMBH) systems in the Catalina Real-Time Transient Survey based on apparent periodicity in their optical light curves. Simulations predict that close-separation accreting SMBH binaries will have different X-ray spectra than single accreting SMBHs. We previously observed these AGN with Chandra and found no differences between their low-energy X-ray properties and the larger AGN population. However, some models predict differences to be more prominent at energies higher than probed by Chandra. We find that even at the higher energies probed by NuSTAR, the spectra of these AGN are indistinguishable from the larger AGN population. This could rule out models predicting large differences in the X-ray spectra in the NuSTAR bands. Alternatively, it might mean that these three AGN are not binary SMBHs. 
    more » « less
  2. ABSTRACT We examine the effect of supermassive black hole (SMBH) mass scaling relation choice on the inferred SMBH mass population since redshift z ∼ 3. To make robust predictions for the gravitational wave background (GWB), we must have a solid understanding of the underlying SMBH demographics. Using the SDSS and 3D-HST + CANDELS surveys for 0 < z < 3, we evaluate the inferred SMBH masses from two SMBH–galaxy scaling relations: MBH–Mbulge and MBH–σ. Our SMBH mass functions come directly from stellar mass measurements for MBH–Mbulge, and indirectly from stellar mass and galaxy radius measurements along with the galaxy mass fundamental plane for MBH–σ. We find that there is a substantial difference in predictions especially for z > 1, and this difference increases out to z = 3. In particular, we find that using velocity dispersion predicts a greater number of SMBHs with masses greater than 109 M⊙. The GWB that pulsar timing arrays find evidence for is higher in amplitude than expected from GWB predictions which rely on high-redshift extrapolations of local SMBH mass–galaxy scaling relations. The difference in SMBH demographics resulting from different scaling relations may be the origin for the mismatch between the signal amplitude and predictions. Generally, our results suggest that a deeper understanding of the potential redshift evolution of these relations is needed if we are to draw significant insight from their predictions at z > 1. 
    more » « less
  3. Abstract Nuclear star clusters (NSCs), made up of a dense concentration of stars and the compact objects they leave behind, are ubiquitous in the central regions of galaxies surrounding the central supermassive black hole (SMBH). Close interactions between stars and stellar-mass black holes (sBHs) lead to tidal disruption events (TDEs). We uncover an interesting new phenomenon: for a subset of these, the unbound debris (to the sBH) remains bound to the SMBH, accreting at a later time, thus giving rise to a second flare. We compute the rate of such events and find them ranging within 10−6–10−3yr−1gal−1for SMBH mass ≃106–109M. Time delays between the two flares spread over a wide range, from less than a year to hundreds of years. The temporal evolution of the light curves of the second flare can vary between the standardt−5/3power law to much steeper decays, providing a natural explanation for observed light curves in tension with the classical TDE model. Our predictions have implications for learning about NSC properties and calibrating its sBH population. Some double flares may be electromagnetic counterparts to LISA extreme-mass-ratio inspiral sources. Another important implication is the possible existence of TDE-like events in very massive SMBHs, where TDEs are not expected. Such flares can affect spin measurements relying on TDEs in the upper SMBH range. 
    more » « less
  4. Abstract The interaction between supermassive black hole (SMBH) feedback and the circumgalactic medium (CGM) continues to be an open question in galaxy evolution. In our study, we use smoothed particle hydrodynamics simulations to explore the impact of SMBH feedback on galactic metal retention and the motion of metals and gas into and through the CGM of L*galaxies. We examine 140 galaxies from the 25 Mpc cosmological volume Romulus25, with stellar masses between log(M*/M) = 9.5–11.5. We measure the fraction of metals remaining in the interstellar medium (ISM) and CGM of each galaxy and calculate the expected mass of each SMBH based on theMBH–σrelation (Kormendy & Ho 2013). The deviation of each SMBH from its expected mass, ΔMBH, is compared to the potential of its host viaσ. We find that SMBHs with accreted mass aboveMBH–σare more effective at removing metals from the ISM than undermassive SMBHs in star-forming galaxies. Overall, overmassive SMBHs suppress the total star formation of their host galaxies and more effectively move metals from the ISM into the CGM. However, we see little to no evacuation of gas from the CGM out of their halos, in contrast with other simulations. Finally, we predict that Civcolumn densities in the CGM of L*galaxies are unlikely to depend on host galaxy SMBH mass. Our results show that the scatter in the low-mass end of the MBH–σrelation may indicate how effective an SMBH is in the local redistribution of mass in its host galaxy. 
    more » « less
  5. ABSTRACT We present Trinity, a flexible empirical model that self-consistently infers the statistical connection between dark matter haloes, galaxies, and supermassive black holes (SMBHs). Trinity is constrained by galaxy observables from 0 < z < 10 [galaxies’ stellar mass functions, specific and cosmic star formation rates (SFRs), quenched fractions, and UV luminosity functions] and SMBH observables from 0 < z < 6.5 (quasar luminosity functions, quasar probability distribution functions, active black hole mass functions, local SMBH mass–bulge mass relations, and the observed SMBH mass distributions of high-redshift bright quasars). The model includes full treatment of observational systematics [e.g. active galactic nucleus (AGN) obscuration and errors in stellar masses]. From these data, Trinity infers the average SMBH mass, SMBH accretion rate, merger rate, and Eddington ratio distribution as functions of halo mass, galaxy stellar mass, and redshift. Key findings include: (1) the normalization and the slope of the SMBH mass–bulge mass relation increases mildly from z = 0 to z = 10; (2) The best-fitting AGN radiative+kinetic efficiency is ∼0.05–0.06, but can be in the range ∼0.035–0.07 with alternative input assumptions; (3) AGNs show downsizing, i.e. the Eddington ratios of more massive SMBHs start to decrease earlier than those of lower mass objects; (4) The average ratio between average SMBH accretion rate and SFR is ∼10−3 for low-mass galaxies, which are primarily star-forming. This ratio increases to ∼10−1 for the most massive haloes below z ∼ 1, where star formation is quenched but SMBHs continue to accrete. 
    more » « less