skip to main content


Search for: All records

Creators/Authors contains: "Panuganti, Shobhana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Semiconductor nanocrystals (NCs) offer prospective use as active optical elements in photovoltaics, light-emitting diodes, lasers, and photocatalysts due to their tunable optical absorption and emission properties, high stability, and scalable solution processing, as well as compatibility with additive manufacturing routes. Over the course of experiments, during device fabrication, or while in use commercially, these materials are often subjected to intense or prolonged electronic excitation and high carrier densities. The influence of such conditions on ligand integrity and binding remains underexplored. Here, we expose CdSe NCs to laser excitation and monitor changes in oleate that is covalently attached to the NC surface using nuclear magnetic resonance as a function of time and laser intensity. Higher photon doses cause increased rates of ligand loss from the particles, with upward of 50% total ligand desorption measured for the longest, most intense excitation. Surprisingly, for a range of excitation intensities, fragmentation of the oleate is detected and occurs concomitantly with formation of aldehydes, terminal alkenes, H2, and water. After illumination, NC size, shape, and bandgap remain constant although low-energy absorption features (Urbach tails) develop in some samples, indicating formation of substantial trap states. The observed reaction chemistry, which here occurs with low photon to chemical conversion efficiency, suggests that ligand reactivity may require examination for improved NC dispersion stability but can also be manipulated to yield desired photocatalytically accessed chemical species. 
    more » « less
    Free, publicly-accessible full text available February 14, 2025
  2. null (Ed.)
    The photothermal properties of metal nitrides have recently received significant attention owing to diverse applications in solar energy conversion, photothermal therapies, photoreactions, and thermochromic windows. Here, the photothermal response of titanium nitride nanoparticles is examined using transient X-ray diffraction, in which optical excitation is synchronized with X-ray pulses to characterize dynamic changes in the TiN lattice. Photoinduced diffraction data is quantitatively analyzed to determine increases in the TiN lattice spacing, which are furthermore calibrated against static, temperature-dependent diffraction patterns of the same samples. Measurements of 20 nm and 50 nm diameter TiN nanoparticles reveal transient lattice heating from room temperature up to ∼175 °C for the highest pump fluences investigated here. Increasing excitation intensity drives sublinear increases in lattice temperature, due to increased heat capacity at the higher effective temperatures achieved at higher powers. Temporal dynamics show that higher excitation intensity drives not only higher lattice temperatures, but also unexpectedly slower cooling of the TiN nanoparticles, which is attributed to heating of the solvent proximal to the nanoparticle surface. 
    more » « less
  3. null (Ed.)
  4. Abstract

    2D hybrid perovskites are attractive for optoelectronic devices. In thin films, the color of optical emission and the texture of crystalline domains are often difficult to control. Here, a method for extinguishing or enhancing different emission features is demonstrated for the family of 2D Ruddlesden–Popper perovskites (EA1−xFAx)4Pb3Br10(EA = ethylammonium, FA = formamidinium). When grown from aqueous hydrobromic acid, crystals of (EA1−xFAx)4Pb3Br10retain all the emission features of their parent compound, (EA)4Pb3Br10. Surprisingly, when grown from dimethylformamide (DMF), an emission feature, likely self‐trapped exciton (STE), near 2.7 eV is missing. Extinction of this feature is correlated with DMF being incorporated between the 2D Pb‐Br sheets, forming (EA1−xFAx)4Pb3Br10∙(DMF)y. Without FA, films grown from DMF form (EA)4Pb3Br10, retain little solvent, and have strong emission near 2.7 eV. Slowing the kinetics of film growth strengthens a different emission feature, likely a different type of STE, which is much broader and present in all compositions. Films of (EA1−xFAx)4Pb3Br10∙(DMF)yhave large, micron‐sized domains and homogeneous orientation of the semiconducting sheets, resulting in low electronic disorder near the absorption edge. The ability to selectively strengthen or extinguish different emission features in films of (EA1−xFAx)4Pb3Br10∙(DMF)yreveals a pathway to tune the emission color in these compounds.

     
    more » « less