- Award ID(s):
- 1808590
- PAR ID:
- 10293389
- Date Published:
- Journal Name:
- Nanoscale
- Volume:
- 13
- Issue:
- 4
- ISSN:
- 2040-3364
- Page Range / eLocation ID:
- 2658 to 2664
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The addition of plasmonic nanoparticles into electrospun polymer fibers can have significant impact on their properties relevant to applications in sensing, catalyst, and energy conversion. A Raman spectrometer incorporated into a photothermal heterodyne imaging system was used to study the hot electron transfer mechanism generated through excitation of a localized surface plasmon resonance (LSPR) of gold and silver nanoparticles in polyacrylonitrile films and nanofibers. The ratio of anion nitrile radicals to neutral nitriles of polyacrylonitrile, provides a measure of the ionization capabilities of the nanoparticles, was found to follow a Boltzmann distribution, indicating that the LSPR mediated hot electron transfer mechanism is dependent on temperature. Silicon nanoparticles were used as a control for temperature and showed that heating itself, using 405 nm and 532 nm pump lasers, was not sufficient to ionize polyacrylonitriles, even at relatively high temperatures. The results provide insight into the roles of heating and electron transfer arising from nanoparticles additives in electrospun polymer fibers and other materials.more » « less
-
Titanium nitride (TiN) materials have gained an interest over the past years due to their unique characteristics, such as thermal stability, extreme hardness, low production cost, and comparable optical properties to gold. In the present study, TiN nanoparticles were synthesized via a thermal benzene route to obtain black nanoparticles. Scanning electron microscopy (SEM) was carried out to examine the morphology. Further microscopic characterization was done where the final product was drop cast onto double-sided conductive carbon tape and sputter-coated with gold/palladium at a thickness of 4 nm for characterization by field emission scanning electron microscopy (FE-SEM) with energy dispersive X-Ray spectroscopy (EDS) that revealed they are spherical. ImageJ software was used to measure the average size of the particles to be 79 nm in diameter. EDS was used to determine the elements present in the sample and concluded that there were no impurities. Further characterization by Fourier Transform infrared (FTIR) spectroscopy was carried out to identify the characteristic peaks of TiN. X-ray diffraction (XRD) revealed typical peaks of cubic phase titanium nitride, and crystallite size was determined to be 14 nm using the Debye-Scherrer method. Dynamic light scattering (DLS) analysis revealed the size distribution of the TiN nanoparticles, with nanoparticles averaging at 154 nm in diameter. Zeta potential concluded the surface of the TiN nanoparticles is negatively charged.more » « less
-
Abstract Colloidal quantum wells, or nanoplatelets, show among the lowest thresholds for amplified spontaneous emission and lasing among solution-cast materials and among the highest modal gains of any known materials. Using solution measurements of colloidal quantum wells, this work shows that under photoexcitation, optical gain increases with pump fluence before rolling off due to broad photoinduced absorption at energies lower than the band gap. Despite the common occurrence of gain induced by an electron–hole plasma found in bulk materials and epitaxial quantum wells, under no measurement conditions was the excitonic absorption of the colloidal quantum wells extinguished and gain arising from a plasma observed. Instead, like gain, excitonic absorption reaches a minimum intensity near a photoinduced carrier sheet density of 2 × 10 13 cm −2 above which the absorption peak begins to recover. To understand the origins of these saturation and reversal effects, measurements were performed with different excitation energies, which deposit differing amounts of excess energy above the band gap. Across many samples, it was consistently observed that less energetic excitation results in stronger excitonic bleaching and gain for a given carrier density. Transient and static optical measurements at elevated temperatures, as well as transient X-ray diffraction of the samples, suggest that the origin of gain saturation and reversal is a heating and disordering of the colloidal quantum wells which produces sub-gap photoinduced absorption.more » « less
-
The magnetocaloric effect (MCE) in iron (Fe) nanoparticles incorporated within a titanium nitride (TiN) thin-film matrix grown using pulsed laser deposition (PLD) is investigated in this study. The study demonstrates the ability to control the entropy change across the magnetic phase transition by varying the size of the Fe nanoparticles. The structural characterization carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and scanning transmission electron (TEM) showed that TiN films are (111) textured, while the Fe-particles are mostly spherical in shapes, are single-crystalline, and have a coherent structure with the surrounding TiN thin-film matrix. The TiN thin-film matrix was chosen as a spacer layer since it is nonmagnetic, is highly corrosion-resistive, and can serve as an excellent conduit for extracting heat due to its high thermal conductivity (11 W/m K). The magnetic properties of Fe–TiN systems were investigated using a superconducting quantum interference device (SQUID) magnetometer. In-plane magnetic fields were applied to record magnetization versus field (M–H) and magnetization versus temperature (M–T) curves. The results showed that the Fe–TiN heterostructure system exhibits a substantial isothermal entropy change (ΔS) over a wide temperature range, encompassing room temperature to the blocking temperature of the Fe nanoparticles. Using Maxwell’s relation and analyzing magnetization–temperature data under different magnetic fields, quantitative insights into the isothermal entropy change (ΔS) and magnetocaloric effect (MCE) were obtained for the Fe–TiN heterostructure system. The study points out a considerable negative change in ΔS that reaches up to 0.2 J/kg K at 0.2 T and 300 K for the samples with a nanoparticle size on the order of 7 nm. Comparative analysis revealed that Fe nanoparticle samples demonstrate higher refrigeration capacity (RC) in comparison to Fe thin-film multilayer samples, with the RC increasing as the Fe particle size decreases. These findings provide valuable insights into the potential application of Fe–TiN heterostructures in solid-state cooling technologies, highlighting their enhanced magnetocaloric properties.
-
Superlattices composed of either monoclinic μ-Fe2O3 or β-(AlxGa1−x)2O3 with β-Ga2O3 spacers are grown on (010) β-Ga2O3 substrates using plasma-assisted molecular beam epitaxy. High-resolution x-ray diffraction data are quantitatively fit using commercial dynamical x-ray diffraction software (LEPTOS) to obtain layer thicknesses, strain, and compositions. The strain state of β-(AlxGa1−x)2O3 and μ-Fe2O3 superlattices as characterized using reciprocal space maps in the symmetric (020) and asymmetric (420) diffraction conditions indicates coherent growths that are strained to the (010) β-Ga2O3 lattice. β-(AlxGa1−x)2O3 and μ-Fe2O3 superlattices grown at hotter substrate temperatures result in crystal structures with better coherency and reduced defects compared to colder growths. The growth rate of μ-Fe2O3 is ∼2.6 nm/min at Tsub = 700 °C and drops to ∼1.6 nm/min at Tsub = 800 °C due to increased Fe interdiffusion at hotter substrate temperatures. Scanning transmission electron microscopy data of a μ-Fe2O3 superlattice grown at Tsub = 700 °C confirm that there is significant diffusion of Fe atoms into β-Ga2O3 layers.