skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photothermal behaviour of titanium nitride nanoparticles evaluated by transient X-ray diffraction
The photothermal properties of metal nitrides have recently received significant attention owing to diverse applications in solar energy conversion, photothermal therapies, photoreactions, and thermochromic windows. Here, the photothermal response of titanium nitride nanoparticles is examined using transient X-ray diffraction, in which optical excitation is synchronized with X-ray pulses to characterize dynamic changes in the TiN lattice. Photoinduced diffraction data is quantitatively analyzed to determine increases in the TiN lattice spacing, which are furthermore calibrated against static, temperature-dependent diffraction patterns of the same samples. Measurements of 20 nm and 50 nm diameter TiN nanoparticles reveal transient lattice heating from room temperature up to ∼175 °C for the highest pump fluences investigated here. Increasing excitation intensity drives sublinear increases in lattice temperature, due to increased heat capacity at the higher effective temperatures achieved at higher powers. Temporal dynamics show that higher excitation intensity drives not only higher lattice temperatures, but also unexpectedly slower cooling of the TiN nanoparticles, which is attributed to heating of the solvent proximal to the nanoparticle surface.  more » « less
Award ID(s):
1808590
PAR ID:
10293389
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
13
Issue:
4
ISSN:
2040-3364
Page Range / eLocation ID:
2658 to 2664
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultrafast lattice deformation of tens to hundreds of nanometer thick metallic crystals, after femtosecond laser excitation, was measured directly using 8.04 keV subpicosecond x-ray and 59 keV femtosecond electron pulses. Coherent phonons were generated in both single crystal and polycrystalline films. Lattice compression was observed within the first few picoseconds after laser irradiation in single crystal aluminum, which was attributed to the generation of a blast force and the propagation of elastic waves. The different time scales of lattice heating for tens and hundreds nanometer thick films are clearly distinguished by electron and x-ray pulse diffraction. The electron and lattice heating due to ultrafast deposition of photon energy was simulated using the two-temperature model and the results agreed with experimental observations. This study demonstrates that the combination of two complementary ultrafast time-resolved methods, ultrafast x-ray, and electron diffraction will provide a panoramic picture of the transient structural changes in crystals. 
    more » « less
  2. The addition of plasmonic nanoparticles into electrospun polymer fibers can have significant impact on their properties relevant to applications in sensing, catalyst, and energy conversion. A Raman spectrometer incorporated into a photothermal heterodyne imaging system was used to study the hot electron transfer mechanism generated through excitation of a localized surface plasmon resonance (LSPR) of gold and silver nanoparticles in polyacrylonitrile films and nanofibers. The ratio of anion nitrile radicals to neutral nitriles of polyacrylonitrile, provides a measure of the ionization capabilities of the nanoparticles, was found to follow a Boltzmann distribution, indicating that the LSPR mediated hot electron transfer mechanism is dependent on temperature. Silicon nanoparticles were used as a control for temperature and showed that heating itself, using 405 nm and 532 nm pump lasers, was not sufficient to ionize polyacrylonitriles, even at relatively high temperatures. The results provide insight into the roles of heating and electron transfer arising from nanoparticles additives in electrospun polymer fibers and other materials. 
    more » « less
  3. Unlike noble metals, refractory plasmonic materials can maintain resilient and attractive optical properties even at comparatively extreme temperatures and high current densities. One refractory plasmonic material of interest is TiN, which exhibits an extremely high melting temperature of about 3000 K and noble-metal-like optical properties in the visible and near-infrared regime. Using lithographically fabricated TiN nanowires and leveraging their ability to host plasmon modes, we have examined plasmonic photothermal heating and photothermoelectric response whose anisotropy and magnitude depend on the width of the nanowires. The photothermoelectric response is consistent with changes in the Seebeck coefficient where the wire fans out to wider contact pads. Upon electrically biasing the structures, Joule heating of the TiN wires can produce detectable thermal emission within the visible and near-IR range, with emission intensity growing rapidly with increasing bias. This emission is consistent with local temperatures exceeding 2000 K, as expected from a finite element model of the Joule heating. 
    more » « less
  4. Titanium nitride (TiN) materials have gained an interest over the past years due to their unique characteristics, such as thermal stability, extreme hardness, low production cost, and comparable optical properties to gold. In the present study, TiN nanoparticles were synthesized via a thermal benzene route to obtain black nanoparticles. Scanning electron microscopy (SEM) was carried out to examine the morphology. Further microscopic characterization was done where the final product was drop cast onto double-sided conductive carbon tape and sputter-coated with gold/palladium at a thickness of 4 nm for characterization by field emission scanning electron microscopy (FE-SEM) with energy dispersive X-Ray spectroscopy (EDS) that revealed they are spherical. ImageJ software was used to measure the average size of the particles to be 79 nm in diameter. EDS was used to determine the elements present in the sample and concluded that there were no impurities. Further characterization by Fourier Transform infrared (FTIR) spectroscopy was carried out to identify the characteristic peaks of TiN. X-ray diffraction (XRD) revealed typical peaks of cubic phase titanium nitride, and crystallite size was determined to be 14 nm using the Debye-Scherrer method. Dynamic light scattering (DLS) analysis revealed the size distribution of the TiN nanoparticles, with nanoparticles averaging at 154 nm in diameter. Zeta potential concluded the surface of the TiN nanoparticles is negatively charged. 
    more » « less
  5. Abstract Colloidal quantum wells, or nanoplatelets, show among the lowest thresholds for amplified spontaneous emission and lasing among solution-cast materials and among the highest modal gains of any known materials. Using solution measurements of colloidal quantum wells, this work shows that under photoexcitation, optical gain increases with pump fluence before rolling off due to broad photoinduced absorption at energies lower than the band gap. Despite the common occurrence of gain induced by an electron–hole plasma found in bulk materials and epitaxial quantum wells, under no measurement conditions was the excitonic absorption of the colloidal quantum wells extinguished and gain arising from a plasma observed. Instead, like gain, excitonic absorption reaches a minimum intensity near a photoinduced carrier sheet density of 2 × 10 13  cm −2 above which the absorption peak begins to recover. To understand the origins of these saturation and reversal effects, measurements were performed with different excitation energies, which deposit differing amounts of excess energy above the band gap. Across many samples, it was consistently observed that less energetic excitation results in stronger excitonic bleaching and gain for a given carrier density. Transient and static optical measurements at elevated temperatures, as well as transient X-ray diffraction of the samples, suggest that the origin of gain saturation and reversal is a heating and disordering of the colloidal quantum wells which produces sub-gap photoinduced absorption. 
    more » « less