- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Arnold, P (2)
-
Chowdhury, MD_S (2)
-
Crossley, S (2)
-
Layza_Escobar, EG (2)
-
Papavassiliou, DV (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 24, 2026
-
Computational Modeling of Methane Pyrolysis in a Fixed-Bed Reactor for CO₂-Free Hydrogen Production”Arnold, P; Chowdhury, MD_S; Layza_Escobar, EG; Crossley, S; Papavassiliou, DV (, American Physical Society, Division of Fluid Dynamics)Understanding the dynamics of a methane bubble in a liquid metal bubble column reactor is important for optimizing the reactor design and improving efficiency. To better understand methane bubble dynamics and the reaction to produce hydrogen, we employ ANSYS Fluent to investigate the gas-liquid interface, to relate the surface area where reaction occurs to bubble size, and to determine coalescing behavior as a function of dimensionless numbers. Once the simulation is verified by comparing bubble velocity [1], shape [2], and coalescing distance [3] for a water-air system, a methane bubble in liquid bismuth at 1000 k is examined [4] [5]. Experimentally obtained kinetic parameters for the reaction are used in the computations. The bubble interfacial area to volume ratio is maximized at a diameter of 4mm and does not induce breakage of the bubble. The coalescing distance for two bubbles of methane in bismuth is a third of the distance for air in water bubbles. REFERENCES 1. S. Baz-Rodríguez, A. Aguilar-Corona, and A. Soria, Rev. Mex. Ing. Quím. 8, 213 (2009). 2. R. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops, and Particles (Academic Press, New York, 1978). 3. T. Otake, S. Tone, K. Nakao, and Y. Mitsuhashi, Chem. Eng. Sci. 32, 377 (1977). 4. M. J. Assael, K. Gialou, K. Kakosimos, and I. Metaxa, High Temp. High Press. 41, 101 (2012). 5. Engineering ToolBox (2004), https://www.engineeringtoolbox.com/methane-d_1420.html. Funding acknowledgement The support of the US National Science Foundation under grant number 2317726 is gratefully acknowledged.more » « lessFree, publicly-accessible full text available November 24, 2026
An official website of the United States government
