Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Favorable polymer-substrate interactions induce surface orientation fields in block copolymer (BCP) melts. In linear BCP processed near equilibrium, alignment of domains generally persists for a small number of periods (∼4–6 D 0 ) before randomization of domain orientation. Bottlebrush BCP are an emerging class of materials with distinct chain dynamics stemming from substantial molecular rigidity, enabling rapid assembly at ultrahigh (>100 nm) domain periodicities with strong photonic properties (structural color). This work assesses interface-induced ordering in PS- b -PLA bottle b rush diblock copolymer films during thermal annealing between planar surfaces. To clearly observe the decay in orientational order from surface to bulk, we choose to study micron-scale films spanning greater than 200 lamellar periods. In situ optical microscopy and transmission UV-Vis spectroscopy are used to monitor photonic properties during annealing and paired with ex situ UV-Vis reflection measurement, cross-sectional scanning electron microscopy (SEM), and small-angle X-ray scattering (SAXS) to probe the evolution of domain microstructure. Photonic properties were observed to saturate within minutes of annealing at 150 °C, with distinct variation in transmission response as a function of film thickness. The depth of the highly aligned surface region was found to vary stochastically in the range of 30–100 lamellarmore »
-
Organic Polymer-based photovoltaic systems offer a viable alternative to more standard solid-state devices for light-harvesting applications. In this study, we investigate the electronic dynamics of a model organic photovoltaic (OPV) heterojunction consisting of polyphenylene vinylene (PPV) oligomers and a [ 6,6 ] -phenyl C61-butyric acid methyl ester (PCBM) blend. Our approach treats the classical molecular dynamics of the atoms within an Ehrenfest mean-field treatment of the π - π ⁎ singly excited states spanning a subset of donor and acceptor molecules near the phase boundary of the blend. Our results indicate that interfacial electronic states are modulated by C=C bond stretching motions and that such motions induce avoided crossings between nearby excited states thereby facilitating transitions from localized excitonic configurations to delocalized charge-separated configurations on an ultrafast time-scale. The lowest few excited states of the model interface rapidly mix allowing low frequency C-C out-of-plane torsions to modulate the potential energy surface such that the system can sample both intermolecular charge-transfer and charge-separated electronic configurations on sub-100 fs time scales. Our simulations support an emerging picture of carrier generation in OPV systems in which interfacial electronic states can rapidly decay into charge-separated and current producing states via coupling to vibronic degrees ofmore »