Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Multiple-use conflicts of the marine benthos (“bottom-use conflicts”) are increasing as humans expand use of the coastal zone. These conflicts necessitate balanced policies that consider the economic and ecological benefits of different bottom uses. In the Virginia coastal lagoons on the US east coast, there is a potential bottom-use conflict between hard clam (Mercenaria mercenaria) aquaculture and seagrass (Zostera marina) meadows. We leveraged two decades (2001–2021) of aerial imagery and environmental data to quantify historic trends in bottom use, assess the realized niche of seagrass and clam aquaculture across depth, sand fraction, root mean square (RMS) velocity, fetch, and sea surface temperature (SST) anomaly, and used random forest models to predict the potential extent of seagrass, clam aquaculture, and bottom-use conflict. We found growth in the coverage of both seagrass (+ 3373%) and clam aquaculture (+ 140%) over the past 20 years with a corresponding increase in bottom-use conflict (+ 2579%), though conflict area remained relatively minor. Seagrass occurred in deeper areas with higher fetch, a higher frequency of SST anomalies, lower sand fraction, and similar RMS velocities to areas containing clam aquaculture. Our random forest models predicted potential for the expansion of seagrass (+ 62%) and clam aquaculture (+ 263.9%) with a relatively small area of predicted spatial overlap (12.3%) under current conditions. These results illustrate how species distribution models can help us understand the spatial impacts of aquaculture on natural ecosystems and inform managers and policy makers to create objective policies that balance socioeconomic and ecologic needs.more » « lessFree, publicly-accessible full text available November 1, 2026
-
Abstract Disturbances can produce a spectrum of short‐ and long‐term ecological consequences that depend on complex interactions of the characteristics of the event, antecedent environmental conditions, and the intrinsic properties of resistance and resilience of the affected biological system.We used Hurricane Harvey's impact on coastal rivers of Texas to examine the roles of storm‐related changes in hydrology and long‐term precipitation regime on the response of stream invertebrate communities to hurricane disturbance.We detected declines in richness, diversity and total abundance following the storm, but responses were strongly tied to direct and indirect effects of long‐term aridity and short‐term changes in stream hydrology. The amount of rainfall a site received drove both flood duration and flood magnitude across sites, but lower annual rainfall amounts (i.e. aridity) increased flood magnitude and decreased flood duration. Across all sites, flood duration was positively related to the time it took for invertebrate communities to return to a long‐term baseline and flood magnitude drove larger invertebrate community responses (i.e. changes in diversity and total abundance). However, invertebrate response per unit flood magnitude was lower in sub‐humid sites, potentially because of differences in refuge availability or ecological‐evolutionary interactions. Interestingly, sub‐humid streams had temporary large peaks in invertebrate total abundance and diversity following recovery period that may be indicative of the larger organic matter pulses expected in these systems because of their comparatively well‐developed riparian vegetation.Our findings show that hydrology and long‐term precipitation regime predictably affected invertebrate community responses and, thus, our work underscores the important influence of local climate to ecosystem sensitivity to disturbances.more » « less
-
Anthropogenic climate change is expected to increase the aridity of many regions of the world. Surface water ecosystems are particularly vulnerable to changes in the water-cycle and may suffer adverse impacts in affected regions. To enhance our understanding of how freshwater communities will respond to predicted shifts in water-cycle dynamics, we employed a space for time approach along a natural precipitation gradient on the Texas Coastal Prairie. In the spring of 2017, we conducted surveys of 10 USGS-gauged, wadeable streams spanning a semi-arid to sub-humid rainfall gradient; we measured nutrients, water chemistry, habitat characteristics, benthic macroinvertebrates, and fish communities. Fish diversity correlated positively with precipitation and was negatively correlated with conductivity. Macroinvertebrate diversity peaked within the middle of the gradient. Semi-arid fish and invertebrate communities were dominated by euryhaline and live-bearing taxa. Sub-humid communities contained environmentally sensitive trichopterans and ephemeropterans as well as a variety of predatory fish which may impose top-down controls on primary consumers. These results warn that aridification coincides with the loss of competitive and environmentally sensitive taxa which could yield less desirable community states.more » « less
-
The organic carbon (Corg) stored in seagrass meadows is globally significant and could be relevant in strategies to mitigate increasing CO2 concentration in the atmosphere. Most of that stored Corg is in the soils that underlie the seagrasses. We explored how seagrass and soil characteristics vary among seagrass meadows across the geographic range of turtlegrass (Thalassia testudinum) with a goal of illuminating the processes controlling soil organic carbon (Corg) storage spanning 23° of latitude. Seagrass abundance (percent cover, biomass, and canopy height) varied by over an order of magnitude across sites, and we found high variability in soil characteristics, with Corg ranging from 0.08 to 12.59% dry weight. Seagrass abundance was a good predictor of the Corg stocks in surficial soils, and the relative importance of seagrass-derived soil Corg increased as abundance increased. These relationships suggest that first-order estimates of surficial soil Corg stocks can be made by measuring seagrass abundance and applying a linear transfer function. The relative availability of the nutrients N and P to support plant growth was also correlated with soil Corg stocks. Stocks were lower at N-limited sites than at P-limited ones, but the importance of seagrass-derived organic matter to soil Corg stocks was not a function of nutrient limitation status. This finding seemed at odds with our observation that labile standard substrates decomposed more slowly at N-limited than at P-limited sites, since even though decomposition rates were 55% lower at N-limited sites, less Corg was accumulating in the soils. The dependence of Corg stocks and decomposition rates on nutrient availability suggests that eutrophication is likely to exert a strong influence on carbon storage in seagrass meadows.more » « less
-
Abstract River managers strive to use the best available science to sustain biodiversity and ecosystem function. To achieve this goal requires consideration of processes at different scales. Metacommunity theory describes how multiple species from different communities potentially interact with local‐scale environmental drivers to influence population dynamics and community structure. However, this body of knowledge has only rarely been used to inform management practices for river ecosystems. In this article, we present a conceptual model outlining how the metacommunity processes of local niche sorting and dispersal can influence the outcomes of management interventions and provide a series of specific recommendations for applying these ideas as well as research needs. In all cases, we identify situations where traditional approaches to riverine management could be enhanced by incorporating an understanding of metacommunity dynamics. A common theme is developing guidelines for assessing the metacommunity context of a site or region, evaluating how that context may affect the desired outcome, and incorporating that understanding into the planning process and methods used. To maximize the effectiveness of management activities, scientists, and resource managers should update the toolbox of approaches to riverine management to reflect theoretical advances in metacommunity ecology. This article is categorized under:Water and Life > Nature of Freshwater EcosystemsWater and Life > Conservation, Management, and AwarenessWater and Life > Methodsmore » « less
-
Abstract Tropical cyclones play an increasingly important role in shaping ecosystems. Understanding and generalizing their responses is challenging because of meteorological variability among storms and its interaction with ecosystems. We present a research framework designed to compare tropical cyclone effects within and across ecosystems that: a) uses a disaggregating approach that measures the responses of individual ecosystem components, b) links the response of ecosystem components at fine temporal scales to meteorology and antecedent conditions, and c) examines responses of ecosystem using a resistance–resilience perspective by quantifying the magnitude of change and recovery time. We demonstrate the utility of the framework using three examples of ecosystem response: gross primary productivity, stream biogeochemical export, and organismal abundances. Finally, we present the case for a network of sentinel sites with consistent monitoring to measure and compare ecosystem responses to cyclones across the United States, which could help improve coastal ecosystem resilience.more » « less
An official website of the United States government
