Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Optimal transport began as the problem of how to efficiently redistribute goods between production and consumers and evolved into a far-reaching geometric variational framework for studying flows of distributions on metric spaces. This theory enables a class of stochastic control problems to regulate dynamical systems so as to limit uncertainty to within specified limits. Representative control examples include the landing of a spacecraft aimed probabilistically toward a target and the suppression of undesirable effects of thermal noise on resonators; in both of these examples, the goal is to regulate the flow of the distribution of the random state. A most unlikely link turned up between transport of probability distributions and a maximum entropy inference problem posed by Erwin Schrödinger, where the latter is seen as an entropy-regularized version of the former. These intertwined topics of optimal transport, stochastic control, and inference are the subject of this review, which aims to highlight connections, insights, and computational tools while touching on quadratic regulator theory and probabilistic flows in discrete spaces and networks. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.more » « less
-
We seek network routing towards a desired final distribution that can mediate possible random link failures. In other words, we seek a routing plan that utilizes alternative routes so as to be relatively robust to link failures. To this end, we provide a mathematical formulation of a relaxed transport problem where the final distribution only needs to be close to the desired one. The problem is cast as a maximum entropy problem for probability distributions on paths with an added terminal cost. The entropic regularizing penalty aims at distributing the choice of paths amongst possible alternatives. We prove that the unique solution may be obtained by solving a generalized Schro ̈dinger system of equations. An iterative algorithm to com- pute the solution is provided. Each iteration of the algorithm contracts the distance (in the Hilbert metric) to the optimal solution by more than 1/2, leading to extremely fast convergence.more » « less
An official website of the United States government
