We consider damped stochastic systems in a controlled (time-varying) potential and study their transition between specified Gibbs-equilibria states in finite time. By the second law of thermody- namics, the minimum amount of work needed to transition from one equilibrium state to another is the difference between the Helmholtz free energy of the two states and can only be achieved by a reversible (infinitely slow) process. The minimal gap between the work needed in a finite-time transition and the work during a reversible one, turns out to equal the square of the optimal mass transport (Wasserstein- 2) distance between the two end-point distributions times the inverse of the duration needed for the transition. This result, in fact, relates non-equilibrium optimal control strategies (protocols) to gradient flows of entropy functionals via the Jordan-Kinderlehrer-Otto scheme. The purpose of this paper is to introduce ideas and results from the emerging field of stochastic thermodynamics in the setting of classical regulator theory, and to draw connections and derive such fundamental relations from a control perspective in a multivariable setting.
more »
« less
Optimal Transport in Systems and Control
Optimal transport began as the problem of how to efficiently redistribute goods between production and consumers and evolved into a far-reaching geometric variational framework for studying flows of distributions on metric spaces. This theory enables a class of stochastic control problems to regulate dynamical systems so as to limit uncertainty to within specified limits. Representative control examples include the landing of a spacecraft aimed probabilistically toward a target and the suppression of undesirable effects of thermal noise on resonators; in both of these examples, the goal is to regulate the flow of the distribution of the random state. A most unlikely link turned up between transport of probability distributions and a maximum entropy inference problem posed by Erwin Schrödinger, where the latter is seen as an entropy-regularized version of the former. These intertwined topics of optimal transport, stochastic control, and inference are the subject of this review, which aims to highlight connections, insights, and computational tools while touching on quadratic regulator theory and probabilistic flows in discrete spaces and networks. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
more »
« less
- PAR ID:
- 10213291
- Date Published:
- Journal Name:
- Annual Review of Control, Robotics, and Autonomous Systems
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2573-5144
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Optimal transport (OT) offers a versatile framework to compare complex data distributions in a geometrically meaningful way. Traditional methods for computing the Wasserstein distance and geodesic between probability measures require mesh-specific domain discretization and suffer from the curse-of-dimensionality. We present GeONet, a mesh-invariant deep neural operator network that learns the non-linear mapping from the input pair of initial and terminal distributions to the Wasserstein geodesic connecting the two endpoint distributions. In the offline training stage, GeONet learns the saddle point optimality conditions for the dynamic formulation of the OT problem in the primal and dual spaces that are characterized by a coupled PDE system. The subsequent inference stage is instantaneous and can be deployed for real-time predictions in the online learning setting. We demonstrate that GeONet achieves comparable testing accuracy to the standard OT solvers on simulation examples and the MNIST dataset with considerably reduced inference-stage computational cost by orders of magnitude.more » « less
-
Abstract Contraction properties of transport maps between probability measures play an important role in the theory of functional inequalities. The actual construction of such maps, however, is a non-trivial task and, so far, relies mostly on the theory of optimal transport. In this work, we take advantage of the infinite-dimensional nature of the Gaussian measure and construct a new transport map, based on the Föllmer process, which pushes forward the Wiener measure onto probability measures on Euclidean spaces. Utilizing the tools of the Malliavin and stochastic calculus in Wiener space, we show that this Brownian transport map is a contraction in various settings where the analogous questions for optimal transport maps are open. The contraction properties of the Brownian transport map enable us to prove functional inequalities in Euclidean spaces, which are either completely new or improve on current results. Further and related applications of our contraction results are the existence of Stein kernels with desirable properties (which lead to new central limit theorems), as well as new insights into the Kannan–Lovász–Simonovits conjecture. We go beyond the Euclidean setting and address the problem of contractions on the Wiener space itself. We show that optimal transport maps and causal optimal transport maps (which are related to Brownian transport maps) between the Wiener measure and other target measures on Wiener space exhibit very different behaviors.more » « less
-
Liquid droplet dynamics are widely used in biological and engineering applications, which contain complex interfacial instabilities and pattern formation such as droplet merging, splitting and transport. This paper studies a class of mean field control formulations for these droplet dynamics, which can be used to control and manipulate droplets in applications. We first formulate the droplet dynamics as gradient flows of free energies in modified optimal transport metrics with nonlinear mobilities. We then design an optimal control problem for these gradient flows. As an example, a lubrication equation for a thin volatile liquid film laden with an active suspension is developed, with control achieved through its activity field. Lastly, we apply the primal–dual hybrid gradient algorithm with high-order finite-element methods to simulate the proposed mean field control problems. Numerical examples, including droplet formation, bead-up/spreading, transport, and merging/splitting on a two-dimensional spatial domain, demonstrate the effectiveness of the proposed mean field control mechanism.more » « less
-
Abstract An adaptive, adversarial methodology is developed for the optimal transport problem between two distributions $$\mu $$ and $$\nu $$, known only through a finite set of independent samples $$(x_i)_{i=1..n}$$ and $$(y_j)_{j=1..m}$$. The methodology automatically creates features that adapt to the data, thus avoiding reliance on a priori knowledge of the distributions underlying the data. Specifically, instead of a discrete point-by-point assignment, the new procedure seeks an optimal map $T(x)$ defined for all $$x$$, minimizing the Kullback–Leibler divergence between $$(T(x_i))$$ and the target $$(y_j)$$. The relative entropy is given a sample-based, variational characterization, thereby creating an adversarial setting: as one player seeks to push forward one distribution to the other, the second player develops features that focus on those areas where the two distributions fail to match. The procedure solves local problems that seek the optimal transfer between consecutive, intermediate distributions between $$\mu $$ and $$\nu $$. As a result, maps of arbitrary complexity can be built by composing the simple maps used for each local problem. Displaced interpolation is used to guarantee global from local optimality. The procedure is illustrated through synthetic examples in one and two dimensions.more » « less
An official website of the United States government

