skip to main content

Search for: All records

Creators/Authors contains: "Pearson, Bryan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Message Queuing Telemetry Transport (MQTT) is a popular communication protocol used to interconnect devices with considerable network restraints, such as those found in Internet of Things (IoT). MQTT directly impacts a large number of devices, but the software security of its server ("broker") implementations is not well studied. In this paper, we design, implement, and evaluate a novel fuzz testing model for MQTT. The fuzzer combines aspects of mutation guided fuzzing and generation guided fuzzing to rigorously exhaust the MQTT protocol and identify vulnerabilities in servers. We introduce Markov chains for mutation guided fuzzing and generation guided fuzzing that model the fuzzing engine according to a finite Bernoulli process. We implement "response feedback", a novel technique which monitors network and console activity to learn which inputs trigger new responses from the broker. In total, we found 7 major vulnerabilities across 9 different MQTT implementations, including 6 zero-day vulnerabilities and 2 CVEs. We show that when fuzzing these popular MQTT targets, our fuzzer compares favorably with other state-of-the-art fuzzing frameworks, such as BooFuzz and AFLNet.
  2. In this paper, we explore the use of microcontrollers (MCUs) and crypto coprocessors to secure IoT applications, and show how developers may implement a low-cost platform that provides protects private keys against software attacks. We first demonstrate the plausibility of format string attacks on the ESP32, a popular MCU from Espressif that uses the Harvard architecture. The format string attacks can be used to remotely steal private keys hard-coded in the firmware. We then present a framework termed SIC 2 (Securing IoT with Crypto Coprocessors), for secure key provisioning that protects end users' private keys from both software attacks and untrustworthy manufacturers. As a proof of concept, we pair the ESP32 with the low-cost ATECC608A cryptographic coprocessor by Microchip and connect to Amazon Web Services (AWS) and Amazon Elastic Container Service (EC2) using a hardware-protected private key, which provides the security features of TLS communication including authentication, encryption and integrity. We have developed a prototype and performed extensive experiments to show that the ATECC608A crypto chip may significantly reduce the TLS handshake time by as much as 82% with the remote server, and it may lower the total energy consumption of the system by up to 70%. Our results indicatemore »that securing IoT with crypto coprocessors is a practicable solution for low-cost MCU based IoT devices.« less
  3. The emerging connected, low-cost, and easy-to-use air quality monitoring systems have enabled a paradigm shift in the field of air pollution monitoring. These systems are increasingly being used by local government and non-profit organizations to inform the public, and to support decision making related to air quality. However, data integrity and system security are rarely considered during the design and deployment of such monitoring systems, and such ignorance leaves tremendous room for undesired and damaging cyber intrusions. The collected measurement data, if polluted, could misinform the public and mislead policy makers. In this paper, we demonstrate such issues by using, a popular low-cost air quality monitoring system that provides an affordable and continuous air quality monitoring capability to broad communities. To protect the air quality monitoring network under this investigation, we denote the company of interest as Through a series of probing, we are able to identify multiple security vulnerabilities in the system, including unencrypted message communication, incompetent authentication mechanisms, and lack of data integrity verification. By exploiting these vulnerabilities, we have the ability of “impersonating” any victim sensor in the system and polluting its data using fabricated data. To the best of our knowledge, this ismore »the first security analysis of low-cost and connected air quality monitoring systems. Our results highlight the urgent need in improving the security and data integrity design in these systems.« less