skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Pearson, Noah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 8, 2025
  2. Abstract Traumatic brain injury (TBI), particularly from explosive blasts, is a major cause of casualties in modern military conflicts. Computational models are an important tool in understanding the underlying biomechanics of TBI but are highly dependent on the mechanical properties of soft tissue to produce accurate results. Reported material properties of brain tissue can vary by several orders of magnitude between studies, and no published set of material parameters exists for porcine brain tissue at strain rates relevant to blast. In this work, brain tissue from the brainstem, cerebellum, and cerebrum of freshly euthanized adolescent male Göttingen minipigs was tested in simple shear and unconfined compression at strain rates ranging from quasi-static (QS) to 300 s−1. Brain tissue showed significant strain rate stiffening in both shear and compression. Minimal differences were seen between different regions of the brain. Both hyperelastic and hyper-viscoelastic constitutive models were fit to experimental stress, considering data from either a single loading mode (unidirectional) or two loading modes together (bidirectional). The unidirectional hyper-viscoelastic models with an Ogden hyperelastic representation and a one-term Prony series best captured the response of brain tissue in all regions and rates. The bidirectional models were generally able to capture the response of the tissue in high-rate shear and all compression modes, but not the QS shear. Our constitutive models describe the first set of material parameters for porcine brain tissue relevant to loading modes and rates seen in blast injury. 
    more » « less
  3. Abstract Computational simulations of traumatic brain injury (TBI) are commonly used to advance understanding of the injury–pathology relationship, tissue damage thresholds, and design of protective equipment such as helmets. Both human and animal TBI models have developed substantially over recent decades, partially due to the inclusion of more detailed brain geometry and representation of tissues like cerebral blood vessels. Explicit incorporation of vessels dramatically affects local strain and enables researchers to investigate TBI-induced damage to the vasculature. While some studies have indicated that cerebral arteries are rate-dependent, no published experimentally based, rate-sensitive constitutive models of cerebral arteries exist. In this work, we characterize the mechanical properties of axially failed porcine arteries, both quasi-statically (0.01 s−1) and at high rate (>100 s−1), and propose a rate-sensitive model to fit the data. We find that the quasi-static and high-rate stress–stretch curves become significantly different (p < 0.05) above a stretch of 1.23. We additionally find a significant change in both failure stretch and stress as a result of strain rate. The stress–stretch curve is then modeled as a Holzapfel–Gasser–Ogden material, with a Prony series added to capture the effects of viscoelasticity. Ultimately, this paper demonstrates that rate dependence should be considered in the material properties of cerebral arteries undergoing high strain-rate deformations and provides a ready-to-use model for finite element implementation. 
    more » « less