skip to main content

Search for: All records

Creators/Authors contains: "Pediredla, Adithya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce Doppler time-of-flight (D-ToF) rendering, an extension of ToF rendering for dynamic scenes, with applications in simulating D-ToF cameras. D-ToF cameras use high-frequency modulation of illumination and exposure, and measure the Doppler frequency shift to compute the radial velocity of dynamic objects. The time-varying scene geometry and high-frequency modulation functions used in such cameras make it challenging to accurately and efficiently simulate their measurements with existing ToF rendering algorithms. We overcome these challenges in a twofold manner: To achieve accuracy, we derive path integral expressions for D-ToF measurements under global illumination and form unbiased Monte Carlo estimates of these integrals. To achieve efficiency, we develop a tailored time-path sampling technique that combines antithetic time sampling with correlated path sampling. We show experimentally that our sampling technique achieves up to two orders of magnitude lower variance compared to naive time-path sampling. We provide an open-source simulator that serves as a digital twin for D-ToF imaging systems, allowing imaging researchers, for the first time, to investigate the impact of modulation functions, material properties, and global illumination on D-ToF imaging performance.

    more » « less
    Free, publicly-accessible full text available December 5, 2024
  2. Abstract

    Ultrasonically-sculpted gradient-index optical waveguides enable non-invasive light confinement inside scattering media. The confinement level strongly depends on ultrasound parameters (e.g., amplitude, frequency), and medium optical properties (e.g., extinction coefficient). We develop a physically-accurate simulator, and use it to quantify these dependencies for a radially-symmetric virtual optical waveguide. Our analysis provides insights for optimizing virtual optical waveguides for given applications. We leverage these insights to configure virtual optical waveguides that improve light confinement fourfold compared to previous configurations at five mean free paths. We show that virtual optical waveguides enhance light throughput by 50% compared to an ideal external lens, in a medium with bladder-like optical properties at one transport mean free path. We corroborate these simulation findings with real experiments: we demonstrate, for the first time, that virtual optical waveguides recycle scattered light, and enhance light throughput by 15% compared to an external lens at five transport mean free paths.

    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Free, publicly-accessible full text available June 1, 2024
  4. A conventional optical lens can be used to focus light into the target medium from outside, without disturbing the medium. The focused spot size is proportional to the focal distance in a conventional lens, resulting in a tradeoff between penetration depth in the target medium and spatial resolution. We have shown that virtual ultrasonically sculpted gradient-index (GRIN) optical waveguides can be formed in the target medium to steer light without disturbing the medium. Here, we demonstrate that such virtual waveguides can relay an externally focused Gaussian beam of light through the medium beyond the focal distance of a single external physical lens, to extend the penetration depth without compromising the spot size. Moreover, the spot size can be tuned by reconfiguring the virtual waveguide. We show that these virtual GRIN waveguides can be formed in transparent and turbid media, to enhance the confinement and contrast ratio of the focused beam of light at the target location. This method can be extended to realize complex optical systems of external physical lenses and in situ virtual waveguides, to extend the reach and flexibility of optical methods.

    more » « less
  5. null (Ed.)