skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pego, Robert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. We study all the ways that a given convex body in d dimensions can break into countably many pieces that move away from each other rigidly at constant velocity, with no rotation or shearing. The initial velocity field is locally constant a.e., but may be continuous and/or fail to be integrable. For any choice of mass-velocity pairs for the pieces, such a motion can be generated by the gradient of a convex potential that is affine on each piece. We classify such potentials in terms of a countable version of a theorem of Alexandrov for convex polytopes, and prove a stability theorem. For bounded velocities, there is a bijection between the mass-velocity data and optimal transport flows (Wasserstein geodesics) that are locally incompressible. Given any rigidly breaking velocity field that is the gradient of a continuous potential, the convexity of the potential is established under any of several conditions, such as the velocity field being continuous, the potential being semiconvex, the mass measure generated by a convexified transport potential being absolutely continuous, or there being a finite number of pieces. Also we describe a number of curious and paradoxical examples having fractal structure. 
    more » « less
  3. We study waves on infinite one-dimensional lattices of particles that each interact with all others through power-law forces 𝐹∼𝑟−𝛽. The inverse-cube case corresponds to Calogero–Moser systems which are well known to be completely integrable for any finite number of particles. The formal long-wave limit for unidirectional waves in these lattices is the Korteweg–de Vries equation if 𝛽>4, but with 2<𝛽<4 it is a nonlocal dispersive PDE that reduces to the Benjamin–Ono equation for 𝛽=3. For the infinite Calogero–Moser lattice, we find explicit formulas that describe solitary and periodic traveling waves. 
    more » « less
  4. Abstract We study the asymptotic convergence as of solutions of , a nonlocal differential equation that is formally a gradient flow in a constant‐mass subspace of arising from simplified models of phase transitions. In case the solution takes finitely many values, we provide a new proof of stabilization that uses a Łojasiewicz‐type gradient inequality near a degenerate curve of equilibria. Solutions with infinitely many values in generalneed notconverge to equilibrium, however, which we demonstrate by providing counterexamples for piecewise linear and cubic functions . Curiously, the exponentialrateof convergence in the finite‐value case can jump from order to arbitrarily small values upon perturbation of parameters. 
    more » « less
  5. The Kompaneets equation governs dynamics of the photon energy spectrum in certain high temperature (or low density) plasmas. We prove several results concerning the long time convergence of solutions to Bose–Einstein equilibria and the failure of photon conservation. In particular, we show the total photon number can decrease with time via an outflux of photons at the zero-energy boundary. The ensuing accumulation of photons at zero energy is analogous to Bose–Einstein condensation. We provide two conditions that guarantee that photon loss occurs, and show that once loss is initiated then it persists forever. We prove that as 𝑡→∞, solutions necessarily converge to equilibrium and we characterize the limit in terms of the total photon loss. Additionally, we provide a few results concerning the behavior of the solution near the zero-energy boundary, an Oleinik inequality, a comparison principle, and show that the solution operator is a contraction in 𝐿1. None of these results impose a boundary condition at the zero-energy boundary. 
    more » « less
  6. A nondispersive, conservative regularisation of the inviscid Burgers equation is proposed and studied. Inspired by a related regularisation of the shallow water system recently introduced by Clamond and Dutykh, the new regularisation provides a family of Galilean-invariant interpolants between the inviscid Burgers equation and the Hunter-Saxton equation. It admits weakly singular regularised shocks and cusped traveling-wave weak solutions. The breakdown of local smooth solutions is demonstrated, and the existence of two types of global weak solutions, conserving or dissipating an H1 energy, is established. Dissipative solutions satisfy an Oleinik inequality like entropy solutions of the inviscid Burgers equation. As the regularisation scale parameter tends to zero or infinity, limits of dissipative solutions are shown to satisfy the inviscid Burgers or Hunter-Saxton equation respectively, forced by an unknown remaining term. 
    more » « less
  7. null (Ed.)