skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global Weak Solutions of a Hamiltonian Regularised Burgers Equation
A nondispersive, conservative regularisation of the inviscid Burgers equation is proposed and studied. Inspired by a related regularisation of the shallow water system recently introduced by Clamond and Dutykh, the new regularisation provides a family of Galilean-invariant interpolants between the inviscid Burgers equation and the Hunter-Saxton equation. It admits weakly singular regularised shocks and cusped traveling-wave weak solutions. The breakdown of local smooth solutions is demonstrated, and the existence of two types of global weak solutions, conserving or dissipating an H1 energy, is established. Dissipative solutions satisfy an Oleinik inequality like entropy solutions of the inviscid Burgers equation. As the regularisation scale parameter tends to zero or infinity, limits of dissipative solutions are shown to satisfy the inviscid Burgers or Hunter-Saxton equation respectively, forced by an unknown remaining term.  more » « less
Award ID(s):
2106534 1812609
PAR ID:
10342451
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Dynamics and Differential Equations
ISSN:
1040-7294
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We demonstrate the feasibility of a scheme to obtain approximate weak solutions to the (inviscid) Burgers equation in conservation and Hamilton-Jacobi form, treated as degenerate elliptic problems. We show different variants recover non-unique weak solutions as appropriate, and also specific constructive approaches to recover the corresponding entropy solutions. 
    more » « less
  2. We prove the existence and uniqueness of positive analytical solutions with positive initial data to the mean field equation (the Dyson equation) of the Dyson Brownian motion through the complex Burgers equation with a force term on the upper half complex plane. These solutions converge to a steady state given by Wigner’s semicircle law. A unique global weak solution with nonnegative initial data to the Dyson equation is obtained, and some explicit solutions are given by Wigner’s semicircle laws. We also construct a bi-Hamiltonian structure for the system of real and imaginary components of the complex Burgers equation (coupled Burgers system). We establish a kinetic formulation for the coupled Burgers system and prove the existence and uniqueness of entropy solutions. The coupled Burgers system in Lagrangian variable naturally leads to two interacting particle systems, the Fermi–Pasta–Ulam–Tsingou model with nearest-neighbor interactions, and the Calogero–Moser model. These two particle systems yield the same Lagrangian dynamics in the continuum limit. 
    more » « less
  3. This paper proves that the motion of small-slope vorticity fronts in the two-dimensional incompressible Euler equations is approximated on cubically nonlinear timescales by a Burgers–Hilbert equation derived by Biello and Hunter (2010) using formal asymptotic expansions. The proof uses a modified energy method to show that the contour dynamics equations for vorticity fronts in the Euler equations and the Burgers–Hilbert equation are both approximated by the same cubically nonlinear asymptotic equation. The contour dynamics equations for Euler vorticity fronts are also derived. 
    more » « less
  4. Abstract The Riemann problem for the discrete conservation law is classified using Whitham modulation theory, a quasi‐continuum approximation, and numerical simulations. A surprisingly elaborate set of solutions to this simple discrete regularization of the inviscid Burgers' equation is obtained. In addition to discrete analogs of well‐known dispersive hydrodynamic solutions—rarefaction waves (RWs) and dispersive shock waves (DSWs)—additional unsteady solution families and finite‐time blowup are observed. Two solution types exhibit no known conservative continuum correlates: (i) a counterpropagating DSW and RW solution separated by a symmetric, stationary shock and (ii) an unsteady shock emitting two counterpropagating periodic wavetrains with the same frequency connected to a partial DSW or an RW. Another class of solutions called traveling DSWs, (iii), consists of a partial DSW connected to a traveling wave comprised of a periodic wavetrain with a rapid transition to a constant. Portions of solutions (ii) and (iii) are interpreted as shock solutions of the Whitham modulation equations. 
    more » « less
  5. Abstract This article represents a 1st step toward understanding the well-posedness of the dispersive Hunter–Saxton equation, which arises in the study of nematic liquid crystals. Although the equation has formal similarities with the KdV equation, the lack of $L^2$ control gives it a quasilinear character. Further, the lack of spatial decay obstructs access to dispersive tools, including local smoothing estimates. Here, we give the 1st proof of local and global well-posedness for the Cauchy problem. Secondly, we improve our well-posedness results with respect to the low regularity of the initial data. The key techniques we use include constructing modified energies to realize a normal form analysis in our quasilinear setting, and frequency envelopes to prove continuous dependence with respect to the initial data. 
    more » « less