skip to main content


Title: Global Weak Solutions of a Hamiltonian Regularised Burgers Equation
A nondispersive, conservative regularisation of the inviscid Burgers equation is proposed and studied. Inspired by a related regularisation of the shallow water system recently introduced by Clamond and Dutykh, the new regularisation provides a family of Galilean-invariant interpolants between the inviscid Burgers equation and the Hunter-Saxton equation. It admits weakly singular regularised shocks and cusped traveling-wave weak solutions. The breakdown of local smooth solutions is demonstrated, and the existence of two types of global weak solutions, conserving or dissipating an H1 energy, is established. Dissipative solutions satisfy an Oleinik inequality like entropy solutions of the inviscid Burgers equation. As the regularisation scale parameter tends to zero or infinity, limits of dissipative solutions are shown to satisfy the inviscid Burgers or Hunter-Saxton equation respectively, forced by an unknown remaining term.  more » « less
Award ID(s):
2106534 1812609
NSF-PAR ID:
10342451
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Dynamics and Differential Equations
ISSN:
1040-7294
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We prove the existence and uniqueness of positive analytical solutions with positive initial data to the mean field equation (the Dyson equation) of the Dyson Brownian motion through the complex Burgers equation with a force term on the upper half complex plane. These solutions converge to a steady state given by Wigner’s semicircle law. A unique global weak solution with nonnegative initial data to the Dyson equation is obtained, and some explicit solutions are given by Wigner’s semicircle laws. We also construct a bi-Hamiltonian structure for the system of real and imaginary components of the complex Burgers equation (coupled Burgers system). We establish a kinetic formulation for the coupled Burgers system and prove the existence and uniqueness of entropy solutions. The coupled Burgers system in Lagrangian variable naturally leads to two interacting particle systems, the Fermi–Pasta–Ulam–Tsingou model with nearest-neighbor interactions, and the Calogero–Moser model. These two particle systems yield the same Lagrangian dynamics in the continuum limit. 
    more » « less
  2. We study the dynamics of a ferrofluid thin film confined in a Hele-Shaw cell, and subjected to a tilted non-uniform magnetic field. It is shown that the interface between the ferrofluid and an inviscid outer fluid (air) supports travelling waves, governed by a novel modified Kuramoto–Sivashinsky-type equation derived under the long-wave approximation. The balance between energy production and dissipation in this long-wave equation allows for the existence of dissipative solitons. These permanent travelling waves’ propagation velocity and profile shape are shown to be tunable via the external magnetic field. A multiple-scale analysis is performed to obtain the correction to the linear prediction of the propagation velocity, and to reveal how the nonlinearity arrests the linear instability. The travelling periodic interfacial waves discovered are identified as fixed points in an energy phase plane. It is shown that transitions between states (wave profiles) occur. These transitions are explained via the spectral stability of the travelling waves. Interestingly, multi-periodic waves, which are a non-integrable analogue of the double cnoidal wave, are also found to propagate under the model long-wave equation. These multi-periodic solutions are investigated numerically, and they are found to be long-lived transients, but ultimately abruptly transition to one of the stable periodic states identified. 
    more » « less
  3. Abstract

    This article represents a 1st step toward understanding the well-posedness of the dispersive Hunter–Saxton equation, which arises in the study of nematic liquid crystals. Although the equation has formal similarities with the KdV equation, the lack of $L^2$ control gives it a quasilinear character. Further, the lack of spatial decay obstructs access to dispersive tools, including local smoothing estimates. Here, we give the 1st proof of local and global well-posedness for the Cauchy problem. Secondly, we improve our well-posedness results with respect to the low regularity of the initial data. The key techniques we use include constructing modified energies to realize a normal form analysis in our quasilinear setting, and frequency envelopes to prove continuous dependence with respect to the initial data.

     
    more » « less
  4. This paper proves that the motion of small-slope vorticity fronts in the two-dimensional incompressible Euler equations is approximated on cubically nonlinear timescales by a Burgers–Hilbert equation derived by Biello and Hunter (2010) using formal asymptotic expansions. The proof uses a modified energy method to show that the contour dynamics equations for vorticity fronts in the Euler equations and the Burgers–Hilbert equation are both approximated by the same cubically nonlinear asymptotic equation. The contour dynamics equations for Euler vorticity fronts are also derived. 
    more » « less
  5. Abstract

    We present a critical analysis of physics-informed neural operators (PINOs) to solve partial differential equations (PDEs) that are ubiquitous in the study and modeling of physics phenomena using carefully curated datasets. Further, we provide a benchmarking suite which can be used to evaluate PINOs in solving such problems. We first demonstrate that our methods reproduce the accuracy and performance of other neural operators published elsewhere in the literature to learn the 1D wave equation and the 1D Burgers equation. Thereafter, we apply our PINOs to learn new types of equations, including the 2D Burgers equation in the scalar, inviscid and vector types. Finally, we show that our approach is also applicable to learn the physics of the 2D linear and nonlinear shallow water equations, which involve three coupled PDEs. We release our artificial intelligence surrogates and scientific software to produce initial data and boundary conditions to study a broad range of physically motivated scenarios. We provide thesource code, an interactivewebsiteto visualize the predictions of our PINOs, and a tutorial for their use at theData and Learning Hub for Science.

     
    more » « less