skip to main content

Search for: All records

Creators/Authors contains: "Peleg, Hila"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. One vision for program synthesis, and specifically for programming by example (PBE), is an interactive programmer's assistant, integrated into the development environment. To make program synthesis practical for interactive use, prior work on Small-Step Live PBE has proposed to limit the scope of synthesis to small code snippets, and enable the users to provide local specifications for those snippets. This paradigm, however, does not work well in the presence of loops. We present LooPy, a synthesizer integrated into a live programming environment, which extends Small-Step Live PBE to work inside loops and scales it up to synthesize larger code snippets, while remaining fast enough for interactive use. To allow users to effectively provide examples at various loop iterations, even when the loop body is incomplete, LooPy makes use of live execution , a technique that leverages the programmer as an oracle to step over incomplete parts of the loop. To enable synthesis of loop bodies at interactive speeds, LooPy introduces Intermediate State Graph , a new data structure, which compactly represents a large space of code snippets composed of multiple assignment statements and conditionals. We evaluate LooPy empirically using benchmarks from competitive programming and previous synthesizers, and show that itmore »can solve a wide variety of synthesis tasks at interactive speeds. We also perform a small qualitative user study which shows that LooPy's block-level specifications are easy for programmers to provide.« less
  2. Hirschfeld, Robert ; Pape, Tobias (Ed.)
    Program synthesis promises to help software developers with everyday tasks by generating code snippets automatically from input-output examples and other high-level specifications. The conventional wisdom is that a synthesizer must always satisfy the specification exactly. We conjecture that this all-or-nothing paradigm stands in the way of adopting program synthesis as a developer tool: in practice, the user-written specification often contains errors or is simply too hard for the synthesizer to solve within a reasonable time; in these cases, the user is left with a single over-fitted result or, more often than not, no result at all. In this paper we propose a new program synthesis paradigm we call best-effort program synthesis, where the synthesizer returns a ranked list of partially-valid results, i.e. programs that satisfy some part of the specification. To support this paradigm, we develop best-effort enumeration, a new synthesis algorithm that extends a popular program enumeration technique with the ability to accumulate and return multiple partially-valid results with minimal overhead. We implement this algorithm in a tool called BESTER, and evaluate it on 79 synthesis benchmarks from the literature. Contrary to the conventional wisdom, our evaluation shows that BESTER returns useful results even when the specification is flawedmore »or too hard: i) for all benchmarks with an error in the specification, the top three BESTER results contain the correct solution, and ii) for most hard benchmarks, the top three results contain non-trivial fragments of the correct solution. We also performed an exploratory user study, which confirms our intuition that partially-valid results are useful: the study shows that programmers use the output of the synthesizer for comprehension and often incorporate it into their solutions.« less