Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Wildfire smoke contains numerous different reactive organic gases, many of which have only recently been identified and quantified. Consequently, their relative importance as an oxidant sink is poorly constrained, resulting in incomplete representation in both global chemical transport models (CTMs) and explicit chemical mechanisms. Leveraging 160 gas-phase measurements made during the Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE-CAN) aircraft campaign, we calculate OH reactivities (OHRs) for western U.S. wildfire emissions, smoke aged >3 days, smoke-impacted and low/no smoke-impacted urban atmospheres, and the clean free troposphere. VOCs were found to account for ∼80% of the total calculated OHR in wildfire emissions, with at least half of the field VOC OHR not currently implemented for biomass burning (BB) emissions in the commonly used GEOS-Chem CTM. To improve the representation of OHR, we recommend CTMs implement furan-containing species, butadienes, and monoterpenes for BB. The Master Chemical Mechanism (MCM) was found to account for 88% of VOC OHR in wildfire emissions and captures its observed decay in the first few hours of aging, indicating that most known VOC OH sinks are included in the explicit mechanisms. We find BB smoke enhanced the average total OHR by 53% relative to the low/no smoke urban background, mainly due to the increase in VOCs and CO thus promoting urban ozone production. This work highlights the most important VOC species for daytime BB plume oxidation and provides a roadmap for which species should be prioritized in next-generation CTMs to better predict the downwind air quality and health impacts of BB smoke.more » « less
-
The evolution of organic aerosol (OA) and brown carbon (BrC) in wildfire plumes, including the relative contributions of primary versus secondary sources, has been uncertain in part because of limited knowledge of the precursor emissions and the chemical environment of smoke plumes. We made airborne measurements of a suite of reactive trace gases, particle composition, and optical properties in fresh western US wildfire smoke in July through August 2018. We use these observations to quantify primary versus secondary sources of biomass-burning OA (BBPOA versus BBSOA) and BrC in wildfire plumes. When a daytime wildfire plume dilutes by a factor of 5 to 10, we estimate that up to one-third of the primary OA has evaporated and subsequently reacted to form BBSOA with near unit yield. The reactions of measured BBSOA precursors contribute only 13 ± 3% of the total BBSOA source, with evaporated BBPOA comprising the rest. We find that oxidation of phenolic compounds contributes the majority of BBSOA from emitted vapors. The corresponding particulate nitrophenolic compounds are estimated to explain 29 ± 15% of average BrC light absorption at 405 nm (BrC Abs405) measured in the first few hours of plume evolution, despite accounting for just 4 ± 2% of average OA mass. These measurements provide quantitative constraints on the role of dilution-driven evaporation of OA and subsequent radical-driven oxidation on the fate of biomass-burning OA and BrC in daytime wildfire plumes and point to the need to understand how processing of nighttime emissions differs.
-
Abstract Wildfire emissions affect downwind air quality and human health. Predictions of these impacts using models are limited by uncertainties in emissions and chemical evolution of smoke plumes. Using high‐time‐resolution aircraft measurements, we illustrate spatial variations that can exist within a plume due to differences in the photochemical environment. Horizontal and vertical crosswind gradients of dilution‐corrected mixing ratios were observed in midday plumes for reactive compounds and their oxidation products, such as nitrous acid, catechol, and ozone, likely due to faster photochemistry in optically thinner plume edges relative to darker plume cores. Gradients in plumes emitted close to sunset are characterized by titration of O3in the plume and reduced or no gradient formation. We show how crosswind gradients can lead to underestimated emission ratios for reactive compounds and overestimated emission ratios for oxidation products. These observations will lead to improved predictions of wildfire emissions, evolution, and impacts across daytime and nighttime.
-
Abstract We present emission measurements of volatile organic compounds (VOCs) for western U.S. wildland fires made on the NSF/NCAR C‐130 research aircraft during the Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE‐CAN) field campaign in summer 2018. VOCs were measured with complementary instruments onboard the C‐130, including a proton‐transfer‐reaction time‐of‐flight mass spectrometer (PTR‐ToF‐MS) and two gas chromatography (GC)‐based methods. Agreement within combined instrument uncertainties (<60%) was observed for most co‐measured VOCs. GC‐based measurements speciated the isomeric contributions to selected PTR‐ToF‐MS ion masses and generally showed little fire‐to‐fire variation. We report emission ratios (ERs) and emission factors (EFs) for 161 VOCs measured in 31 near‐fire smoke plume transects of 24 specific individual fires sampled in the afternoon when burning conditions are typically most active. Modified combustion efficiency (MCE) ranged from 0.85 to 0.94. The measured campaign‐average total VOC EF was 26.1 ± 6.9 g kg−1, approximately 67% of which is accounted for by oxygenated VOCs. The 10 most abundantly emitted species contributed more than half of the total measured VOC mass. We found that MCE alone explained nearly 70% of the observed variance for total measured VOC emissions (
r 2 = 0.67) and >50% for 57 individual VOC EFs representing more than half the organic carbon mass. Finally, we found little fire‐to‐fire variability for the mass fraction contributions of individual species to the total measured VOC emissions, suggesting that a single speciation profile can describe VOC emissions for the wildfires in coniferous ecosystems sampled during WE‐CAN. -
Abstract Reactive nitrogen (
N r ) within smoke plumes plays important roles in the production of ozone, the formation of secondary aerosols, and deposition of fixed N to ecosystems. The Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE‐CAN) field campaign sampled smoke from 23 wildfires throughout the western U.S. during summer 2018 using the NSF/NCAR C‐130 research aircraft. We empirically estimateN r normalized excess mixing ratios and emission factors from fires sampled within 80 min of estimated emission and explore variability in the dominant forms ofN r between these fires. We find that reduced N compounds comprise a majority (39%–80%; median = 66%) of total measured reactive nitrogen (ΣN r ) emissions. The smoke plumes sampled during WE‐CAN feature rapid chemical transformations after emission. As a result, within minutes after emission total measured oxidized nitrogen (Σ NOy) and measured totalΣ NHx(NH3 +p NH4) are more robustly correlated with modified combustion efficiency (MCE) than NOxand NH3by themselves. The ratio of ΣNHx/ΣNOydisplays a negative relationship with MCE, consistent with previous studies. A positive relationship with total measuredΣN r suggests that both burn conditions and fuel N content/volatilization differences contribute to the observed variability in the distribution of reduced and oxidizedN r . Additionally, we compare our in situ field estimates ofN r EFs to previous lab and field studies. For similar fuel types, we findΣ NHxEFs are of the same magnitude or larger than lab‐based NH3EF estimates, andΣ NOyEFs are smaller than lab NOxEFs.