skip to main content

Search for: All records

Creators/Authors contains: "Peng, Richard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. Free, publicly-accessible full text available November 6, 2024
  3. Free, publicly-accessible full text available May 1, 2024
  4. Tauman Kalai, Yael (Ed.)
    Over the last two decades, a significant line of work in theoretical algorithms has made progress in solving linear systems of the form š‹š± = š›, where š‹ is the Laplacian matrix of a weighted graph with weights w(i,j) > 0 on the edges. The solution š± of the linear system can be interpreted as the potentials of an electrical flow in which the resistance on edge (i,j) is 1/w(i,j). Kelner, Orrechia, Sidford, and Zhu [Kelner et al., 2013] give a combinatorial, near-linear time algorithm that maintains the Kirchoff Current Law, and gradually enforces the Kirchoff Potential Law by updating flows around cycles (cycle toggling). In this paper, we consider a dual version of the algorithm that maintains the Kirchoff Potential Law, and gradually enforces the Kirchoff Current Law by cut toggling: each iteration updates all potentials on one side of a fundamental cut of a spanning tree by the same amount. We prove that this dual algorithm also runs in a near-linear number of iterations. We show, however, that if we abstract cut toggling as a natural data structure problem, this problem can be reduced to the online vector-matrix-vector problem (OMv), which has been conjectured to be difficult for dynamic algorithms [Henzinger et al., 2015]. The conjecture implies that the data structure does not have an O(n^{1-Īµ}) time algorithm for any Īµ > 0, and thus a straightforward implementation of the cut-toggling algorithm requires essentially linear time per iteration. To circumvent the lower bound, we batch update steps, and perform them simultaneously instead of sequentially. An appropriate choice of batching leads to an OĢƒ(m^{1.5}) time cut-toggling algorithm for solving Laplacian systems. Furthermore, we show that if we sparsify the graph and call our algorithm recursively on the Laplacian system implied by batching and sparsifying, we can reduce the running time to O(m^{1 + Īµ}) for any Īµ > 0. Thus, the dual cut-toggling algorithm can achieve (almost) the same running time as its primal cycle-toggling counterpart. 
    more » « less
  5. We give an algorithm that computes exact maximum flows and minimum-cost flows on directed graphs with m edges and polynomially bounded integral demands, costs, and capacities in m^{1+o(1)} time. Our algorithm builds the flow through a sequence of m^{1+o(1)} approximate undirected minimum-ratio cycles, each of which is computed and processed in amortized m^{o(1)} time using a new dynamic graph data structure. Our framework extends to algorithms running in m^{1+o(1)} time for computing flows that minimize general edge-separable convex functions to high accuracy. This gives almost-linear time algorithms for several problems including entropy-regularized optimal transport, matrix scaling, p-norm flows, and p-norm isotonic regression on arbitrary directed acyclic graphs. 
    more » « less
  6. Joseph (Ed.)