skip to main content

Search for: All records

Creators/Authors contains: "Perdrial, Julia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Winters in snow-covered regions have warmed, likely shifting the timing and magnitude of nutrient export, leading to unquantified changes in water quality. Intermittent, seasonal, and permanent snow covers more than half of the global land surface. Warming has reduced the cold conditions that limit winter runoff and nutrient transport, while cold season snowmelt, the amount of winter precipitation falling as rain, and rain-on-snow have increased. We used existing geospatial datasets (rain-on-snow frequency overlain on nitrogen and phosphorous inventories) to identify areas of the contiguous United States (US) where water quality could be threatened by this change. Next, to illustrate the potential export impacts of these events, we examined flow and turbidity data from a large regional rain-on-snow event in the United States’ largest river basin, the Mississippi River Basin. We show that rain-on-snow, a major flood-generating mechanism for large areas of the globe (Berghuijs et al 2019 Water Resour. Res. 55 4582–93; Berghuijs et al 2016 Geophys. Res. Lett. 43 4382–90), affects 53% of the contiguous US and puts 50% of US nitrogen and phosphorus pools (43% of the contiguous US) at risk of export to groundwater and surface water. Further, the 2019 rain-on-snow event in the Mississippi Rivermore »Basin demonstrates that these events could have large, cascading impacts on winter nutrient transport. We suggest that the assumption of low wintertime discharge and nutrient transport in historically snow-covered regions no longer holds. Critically, however, we lack sufficient data to accurately measure and predict these episodic and potentially large wintertime nutrient export events at regional to continental scales.« less
    Free, publicly-accessible full text available October 1, 2023
  2. Abstract

    Tree-derived dissolved organic matter (DOM) comprises a significant carbon flux within forested watersheds. Few studies have assessed the optical properties of tree-derived DOM. To increase understanding of the factors controlling tree-derived DOM quality, we measured DOM optical properties, dissolved organic carbon (DOC) and calcium concentrations in throughfall and stemflow for 17 individual rain events during summer and fall in a temperate deciduous forest in Vermont, United States. DOC and calcium fluxes in throughfall and stemflow were enriched on average 4 to 70 times incident fluxes in rain. A multiway model was developed using absorbance and fluorescence spectroscopy to further characterize DOM optical properties. Throughfall contained a higher percentage of protein-like DOM fluorescence than stemflow while stemflow was characterized by a higher percentage of humic-like DOM fluorescence. DOM absorbance spectral slopes in yellow birch (Betula alleghaniensis) stemflow were significantly higher than in sugar maple (Acer saccharum) stemflow. DOM optical metrics were not influenced by rainfall volume, but percent protein-like fluorescence increased in throughfall during autumn when leaves senesced. Given the potential influence of tree-derived DOM fluxes on receiving soils and downstream ecosystems, future modeling of DOM transport and soil biogeochemistry should represent the influence of differing DOM quality in throughfallmore »and stemflow across tree species and seasons.

    « less
  3. Understanding and predicting catchment responses to a regional disturbance is difficult because catchments are spatially heterogeneous systems that exhibit unique moderating characteristics. Changes in precipitation composition in the Northeastern U.S. is one prominent example, where reduction in wet and dry deposition is hypothesized to have caused increased dissolved organic carbon (DOC) export from many northern hemisphere forested catchments; however, findings from different locations contradict each other. Using shifts in acid deposition as a test case, we illustrate an iterative “process and pattern” approach to investigate the role of catchment characteristics in modulating the steam DOC response. We use a novel dataset that integrates regional and catchment-scale atmospheric deposition data, catchment characteristics and co-located stream Q and stream chemistry data. We use these data to investigate opportunities and limitations of a pattern-to-process approach where we explore regional patterns of reduced acid deposition, catchment characteristics and stream DOC response and specific soil processes at select locations. For pattern investigation, we quantify long-term trends of flow-adjusted DOC concentrations in stream water, along with wet deposition trends in sulfate, for USGS headwater catchments using Seasonal Kendall tests and then compare trend results to catchment attributes. Our investigation of climatic, topographic, and hydrologic catchment attributesmore »vs. directionality of DOC trends suggests soil depth and catchment connectivity as possible modulating factors for DOC concentrations. This informed our process-to-pattern investigation, in which we experimentally simulated increased and decreased acid deposition on soil cores from catchments of contrasting long-term DOC response [Sleepers River Research Watershed (SRRW) for long-term increases in DOC and the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) for long-term decreases in DOC]. SRRW soils generally released more DOC than SSHCZO soils and losses into recovery solutions were higher. Scanning electron microscope imaging indicates a significant DOC contribution from destabilizing soil aggregates mostly from hydrologically disconnected landscape positions. Results from this work illustrate the value of an iterative process and pattern approach to understand catchment-scale response to regional disturbance and suggest opportunities for further investigations.« less
  4. Stream drying and wildfire are projected to increase with climate change in the western United States, and both are likely to impact stream chemistry patterns and processes. To investigate drying and wildfire effects on stream chemistry (carbon, nutrients, anions, cations, and isotopes), we examined seasonal drying in two intermittent streams in southwestern Idaho, one stream that was unburned and one that burned 8 months prior to our study period. During the seasonal recession following snowmelt, we hypothesized that spatiotemporal patterns of stream chemistry would change due to increased evaporation, groundwater dominance, and autochthonous carbon production. With increased nutrients and reduced canopy cover, we expected greater shifts in the burned stream. To capture spatial chemistry patterns, we sampled surface water for a suite of analytes along the length of each stream with a high spatial scope (50-m sampling along ~2,500 m). To capture temporal variation, we sampled each stream in April (higher flow), May, and June (lower flow) in 2016. Seasonal patterns and processes influencing stream chemistry were generally similar in both streams, but some were amplified in the burned stream. Mean dissolved inorganic carbon (DIC) concentrations increased with drying by 22% in the unburned and by 300% in the burnedmore »stream. In contrast, mean total nitrogen (TN) concentrations decreased in both streams, with a 16% TN decrease in the unburned stream and a 500% TN decrease (mostly nitrate) in the burned stream. Contrary to expectations, dissolved organic carbon (DOC) concentrations varied more in space than in time. In addition, we found the streams did not become more evaporative relative to the Local Meteoric Water Line (LMWL) and we found weak evidence for evapoconcentration with drying. However, consistent with our expectations, strontium-DIC ratios indicated stream water shifted toward groundwater-dominance, especially in the burned stream. Fluorescence and absorbance measurements showed considerable spatial variation in DOC sourcing each month in both streams, and mean values suggested a temporal shift from allochthonous toward autochthonous carbon sources in the burned stream. Our findings suggest that the effects of fire may magnify some chemistry patterns but not the biophysical controls that we tested with stream drying.« less