Agricultural runoff from the Mississippi‐Atchafalaya River Basin delivers nitrogen (N) and phosphorus (P) to the Gulf of Mexico, causing hypoxia, and climate drives interannual variation in nutrient loads. Climate phenomena such as El Niño–Southern Oscillation may influence nutrient export through effects on river flow, nutrient uptake, or biogeochemical transformation, but landscape variation at smaller spatial scales can mask climate signals in load or discharge time series within large river networks. We used multivariate autoregressive state‐space modeling to investigate climate signals in the long‐term record (1979–2014) of discharge, N, P, and SiO2loads at three nested spatial scales within the Mississippi‐Atchafalaya River Basin. We detected significant signals of El Niño–Southern Oscillation and land‐surface temperature anomalies in N loads but not discharge, SiO2, or P, suggesting that large‐scale climate phenomena contribute to interannual variation in nutrient loads through biogeochemical mechanisms beyond simple discharge‐load relationships.
- PAR ID:
- 10390029
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 17
- Issue:
- 10
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- 104044
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null ; null ; null ; null ; null (Ed.)The Midwest state of Iowa in the US is one of the major producers of corn, soybean, ethanol, and animal products, and has long been known as a significant contributor of nitrogen loads to the Mississippi river basin, supplying the nutrient-rich water to the Gulf of Mexico. Nitrogen is the principal contributor to the formation of the hypoxic zone in the northern Gulf of Mexico with a significant detrimental environmental impact. Agriculture, animal agriculture, and ethanol production are deeply connected to Iowa’s economy. Thus, with increasing ethanol production, high yield agriculture practices, growing animal agriculture, and the related economy, there is a need to understand the interrelationship of Iowa’s food-energy-water system to alleviate its impact on the environment and economy through improved policy and decision making. In this work, the Iowa food-energy-water (IFEW) system model is proposed that describes its interrelationship. Further, a macro-scale nitrogen export model of the agriculture and animal agriculture systems is developed. Global sensitivity analysis of the nitrogen export model reveals that the commercial nitrogen-based fertilizer application rate for corn production and corn yield are the two most influential factors affecting the surplus nitrogen in the soil.more » « less
-
Abstract Winters are changing rapidly across the globe but the implications for aquatic productivity and food webs are not well understood. In addition, the degree to which winter dynamics in aquatic systems respond to large‐scale climate versus ecosystem‐level factors is unclear but important for understanding and managing potential changes. We used a unique winter data set from the Upper Mississippi River System to explore spatial and temporal patterns in phytoplankton biomass (chlorophyll
a , CHL) and associated environmental covariates across 25 years and ∼1,500 river km. To assess the role of regional climate versus site‐specific drivers of winter CHL, we evaluated whether there were coherent long‐term CHL dynamics from north to south and across lotic‐lentic areas. We then estimated the degree to which these patterns were associated with climate variability (i.e., the Multivariate El Nino‐Southern Oscillation Index), winter severity (freezing degree days), river discharge, or site‐specific environmental variables (ice depth, snow depth, and nutrient concentrations). We found that winter CHL was typically highest in ice‐free reaches and backwater lakes, occasionally exceeding summer values. We did not find highly synchronous CHL dynamics across the basin, but instead show that temporal trends were independent among river reaches and lotic‐lentic areas of the river. Moreover, after accounting for these spatial dynamics, we found that CHL was most responsive to winter air temperature, being consistently higher in years with warmer winters across the basin. These results indicate that although productivity dynamics are highly dynamic within large river ecosystems, changes in the duration and severity of winter may uniformly increase wintertime productivity. -
Large runoff, sediment, and nutrient exports from watersheds could occur due to individual extreme climate events or a combination of multiple hydrologic and meteorological conditions. Using high-frequency hydrologic, sediment, and turbidity data we show that freeze–thaw episodes followed by intense winter (February) rainstorms can export very high concentrations and loads of suspended sediment and particulate organic carbon (POC) and nitrogen (PN) from mid-Atlantic watersheds in the US. Peak suspended sediment (> 5000 mg L−1), POC (> 250 mg L−1) and PN (> 15 mg L−1) concentrations at our 12 and 79 ha forested watersheds for the February rainfall-runoff events were highest on record and the fluxes were comparable to those measured for tropical storms. Similar responses were observed for turbidity values (> 400 FNU) at larger USGS-monitored watersheds. Much of the sediments and particulate nutrients likely originated from erosion of stream bank sediments and/or channel storage. Currently, there is considerable uncertainty about the contribution of these sources to nonpoint source pollution, particularly, in watersheds with large legacy sediment deposits. Future climate projections indicate increased intensification of storm events and increased variability of winter temperatures. Freeze–thaw cycles coupled with winter rain events could increase erosion and transport of streambank sediments with detrimental consequences for water quality and health of downstream aquatic ecosystems.more » « less
-
Abstract The Mississippi River basin drains nearly one-half of the contiguous United States, and its rivers serve as economic corridors that facilitate trade and transportation. Flooding remains a perennial hazard on the major tributaries of the Mississippi River basin, and reducing the economic and humanitarian consequences of these events depends on improving their seasonal predictability. Here, we use climate reanalysis and river gauge data to document the evolution of floods on the Missouri and Ohio Rivers—the two largest tributaries of the Mississippi River—and how they are influenced by major modes of climate variability centered in the Pacific and Atlantic Oceans. We show that the largest floods on these tributaries are preceded by the advection and convergence of moisture from the Gulf of Mexico following distinct atmospheric mechanisms, where Missouri River floods are associated with heavy spring and summer precipitation events delivered by the Great Plains low-level jet, whereas Ohio River floods are associated with frontal precipitation events in winter when the North Atlantic subtropical high is anomalously strong. Further, we demonstrate that the El Niño–Southern Oscillation can serve as a precursor for floods on these rivers by mediating antecedent soil moisture, with Missouri River floods often preceded by a warm eastern tropical Pacific (El Niño) and Ohio River floods often preceded by a cool eastern tropical Pacific (La Niña) in the months leading up peak discharge. We also use recent floods in 2019 and 2021 to demonstrate how linking flood hazard to sea surface temperature anomalies holds potential to improve seasonal predictability of hydrologic extremes on these rivers.